axis of abscissae
简明释义
横坐标轴;
英英释义
The axis of abscissae refers to the horizontal axis in a Cartesian coordinate system, where the x-coordinates of points are represented. | 横坐标轴是指笛卡尔坐标系中的水平轴,其中点的x坐标被表示出来。 |
例句
1.In a standard Cartesian coordinate system, the axis of abscissae 横坐标轴 is typically represented as the horizontal line.
在标准的笛卡尔坐标系中,axis of abscissae 横坐标轴 通常表示为水平线。
2.When plotting the function, make sure to label the axis of abscissae 横坐标轴 correctly to avoid confusion.
绘制函数时,请确保正确标记 axis of abscissae 横坐标轴 以避免混淆。
3.The intersection of the x-axis and y-axis occurs at the origin, which is where the axis of abscissae 横坐标轴 meets the axis of ordinates 纵坐标轴.
x轴和y轴的交点发生在原点,即 axis of abscissae 横坐标轴 与 axis of ordinates 纵坐标轴 相交的地方。
4.To analyze the data effectively, you should plot it on the axis of abscissae 横坐标轴 with time intervals.
为了有效分析数据,您应该在 axis of abscissae 横坐标轴 上按时间间隔绘制它。
5.In this graph, the values along the axis of abscissae 横坐标轴 represent different categories of data.
在这个图表中,axis of abscissae 横坐标轴 上的值代表不同的数据类别。
作文
In the realm of mathematics, particularly in coordinate geometry, understanding the concept of the axis of abscissae is fundamental. The axis of abscissae refers to the horizontal line on a Cartesian coordinate system where the y-coordinate is zero. This line serves as a reference point for determining the position of points in a two-dimensional space. Each point in this plane is represented by an ordered pair (x, y), where 'x' corresponds to the value along the axis of abscissae and 'y' represents the value along the vertical axis known as the ordinate. The significance of the axis of abscissae cannot be overstated. It allows us to visualize and analyze relationships between different variables. For instance, when plotting a graph of a linear equation, such as y = 2x + 3, we can identify how changes in 'x' affect 'y'. By substituting various values for 'x', we can find corresponding 'y' values and plot these points on the graph. The intersection of these points with the axis of abscissae indicates where the graph crosses this horizontal line, providing crucial information about the behavior of the equation. Moreover, the axis of abscissae is essential in understanding functions and their properties. A function is often defined as a relation that assigns exactly one output for each input. When examining the graph of a function, the axis of abscissae plays a vital role in identifying the domain of the function, which consists of all possible input values. By analyzing how the graph behaves in relation to the axis of abscissae, we can determine whether the function is increasing, decreasing, or constant across different intervals. In practical applications, the axis of abscissae is also utilized in various fields such as physics, economics, and engineering. For example, in physics, the axis of abscissae might represent time, while the ordinate could represent distance. This allows scientists to graph the motion of an object over time, making it easier to analyze its speed and acceleration. Similarly, in economics, the axis of abscissae can depict quantity, while the ordinate represents price, enabling economists to study supply and demand curves effectively. In conclusion, mastering the concept of the axis of abscissae is crucial for anyone delving into mathematics or related fields. It not only provides a foundation for graphing and analyzing equations but also enhances our understanding of real-world phenomena. By recognizing the importance of this horizontal line in the Cartesian plane, we can better interpret data, solve problems, and make informed decisions based on graphical representations. Therefore, the axis of abscissae is not merely a mathematical term; it is a vital tool for understanding the intricate relationships within our world.
在数学领域,特别是在坐标几何中,理解“abscissae轴”的概念是基础。abscissae轴指的是笛卡尔坐标系中水平线,其中y坐标为零。这条线作为确定二维空间中点位置的参考点。在这个平面中的每个点由有序对(x, y)表示,其中'x'对应于abscissae轴上的值,而'y'代表沿着称为纵坐标的垂直轴的值。abscissae轴的重要性不容小觑。它使我们能够可视化和分析不同变量之间的关系。例如,当绘制线性方程的图形时,如y = 2x + 3,我们可以确定'x'的变化如何影响'y'。通过替换'x'的不同值,我们可以找到相应的'y'值并将这些点绘制在图上。这些点与abscissae轴的交点指示了图形与这条水平线的交叉,为方程的行为提供了重要信息。此外,abscissae轴对于理解函数及其特性至关重要。函数通常定义为一个关系,为每个输入分配一个确切的输出。当检查函数的图形时,abscissae轴在识别函数的定义域方面发挥着重要作用,定义域由所有可能的输入值组成。通过分析图形相对于abscissae轴的行为,我们可以确定函数在不同区间内是增加、减少还是保持不变。在实际应用中,abscissae轴也被广泛应用于物理学、经济学和工程等各个领域。例如,在物理学中,abscissae轴可能代表时间,而纵坐标可以代表距离。这使科学家能够绘制物体随时间运动的图形,从而更容易分析其速度和加速度。同样,在经济学中,abscissae轴可以描绘数量,而纵坐标表示价格,使经济学家能够有效研究供需曲线。总之,掌握abscissae轴的概念对于任何深入研究数学或相关领域的人来说都是至关重要的。它不仅为图形绘制和方程分析提供了基础,而且增强了我们对现实世界现象的理解。通过认识到这条水平线在笛卡尔平面中的重要性,我们可以更好地解释数据、解决问题,并根据图形表示做出明智的决策。因此,abscissae轴不仅仅是一个数学术语;它是理解我们世界中复杂关系的重要工具。