average weighted

简明释义

加权平均的;

英英释义

Average weighted refers to a method of calculating an average where each value in the dataset is multiplied by a predetermined weight before summing them up, and then dividing by the total of the weights.

加权平均指的是一种计算平均值的方法,其中数据集中的每个值都乘以预先确定的权重,然后将它们相加,最后除以权重的总和。

例句

1.The average weighted 加权平均 cost of capital is crucial for making investment decisions.

资本的average weighted 加权平均 成本对于投资决策至关重要。

2.For the project evaluation, we will calculate the average weighted 加权平均 score of all criteria.

为了项目评估,我们将计算所有标准的average weighted 加权平均 分数。

3.In our survey, we applied an average weighted 加权平均 score to reflect the importance of different questions.

在我们的调查中,我们应用了一个average weighted 加权平均 分数,以反映不同问题的重要性。

4.The final grade in this course is calculated using an average weighted 加权平均 method, where exams count more than quizzes.

这门课程的最终成绩是使用average weighted 加权平均 方法计算的,其中考试的权重高于小测验。

5.To assess the performance of our portfolio, we use an average weighted 加权平均 return based on the amount invested in each asset.

为了评估我们的投资组合表现,我们使用基于每项资产投资金额的average weighted 加权平均 回报。

作文

In today's data-driven world, understanding how to analyze and interpret various types of information is crucial. One important concept that often arises in statistics and data analysis is the idea of average weighted. The term refers to a method of calculating an average where each value contributes to the final result based on its importance or weight. This is particularly useful when dealing with datasets that have varying levels of significance among their members. For instance, in an academic setting, a student's final grade may not simply be an arithmetic mean of all test scores; instead, certain tests might carry more weight than others depending on their importance in the curriculum. Thus, the final grade can be calculated using a average weighted approach, ensuring that more significant assessments have a greater influence on the overall outcome.To illustrate this concept further, consider a scenario in which a student has taken three exams: Exam 1, Exam 2, and Exam 3. Suppose Exam 1 is worth 30% of the final grade, Exam 2 is worth 50%, and Exam 3 is worth 20%. If the student scores 80 on Exam 1, 90 on Exam 2, and 70 on Exam 3, the final grade can be calculated using the average weighted formula:Final Grade = (Score1 * Weight1) + (Score2 * Weight2) + (Score3 * Weight3)Plugging in the values: Final Grade = (80 * 0.3) + (90 * 0.5) + (70 * 0.2) = 24 + 45 + 14 = 83. This example demonstrates how the average weighted method allows for a more accurate representation of a student's performance by considering the relative importance of each exam.The application of average weighted calculations extends beyond academics. In finance, for instance, investors often use weighted averages to assess the performance of a portfolio. Different assets within a portfolio may have different amounts invested in them, and thus, they should not contribute equally to the overall return. By applying a average weighted approach, investors can better understand how each asset influences the total return based on its proportion in the portfolio.Moreover, the concept of average weighted is also prevalent in various fields such as economics, engineering, and healthcare. For example, in healthcare, patient outcomes can be evaluated using weighted averages to account for different factors affecting health conditions. This ensures that the evaluation reflects the true effectiveness of treatments or interventions based on the severity of cases treated.In conclusion, mastering the concept of average weighted is vital for anyone looking to navigate the complexities of data analysis. It provides a nuanced understanding of averages by incorporating the significance of each data point, leading to more informed decisions in both academic and practical applications. As we continue to generate and rely on vast amounts of data, the ability to apply average weighted calculations will undoubtedly enhance our analytical skills and improve our decision-making processes.

在当今数据驱动的世界中,理解如何分析和解释各种类型的信息至关重要。统计学和数据分析中经常出现的一个重要概念是加权平均的概念。该术语指的是一种计算平均值的方法,其中每个值根据其重要性或权重对最终结果产生贡献。当处理具有不同重要性水平的数据集时,这尤其有用。例如,在学术环境中,学生的最终成绩可能不仅仅是所有考试分数的算术平均值;相反,某些考试可能由于其在课程中的重要性而比其他考试更具权重。因此,最终成绩可以通过加权平均的方法进行计算,确保更重要的评估对整体结果有更大的影响。为了进一步说明这个概念,考虑一个场景,其中一名学生参加了三次考试:考试1、考试2和考试3。假设考试1占最终成绩的30%,考试2占50%,考试3占20%。如果学生在考试1中得了80分,在考试2中得了90分,在考试3中得了70分,则最终成绩可以使用加权平均公式进行计算:最终成绩 = (分数1 * 权重1) + (分数2 * 权重2) + (分数3 * 权重3)代入数值:最终成绩 = (80 * 0.3) + (90 * 0.5) + (70 * 0.2) = 24 + 45 + 14 = 83。这个例子展示了加权平均方法如何通过考虑每次考试的相对重要性,更准确地反映学生的表现。加权平均计算的应用超越了学术领域。在金融领域,例如,投资者通常使用加权平均来评估投资组合的表现。投资组合中的不同资产可能投资金额不同,因此它们不应同等地对总回报产生贡献。通过应用加权平均方法,投资者可以更好地理解每种资产如何根据其在投资组合中的比例影响总回报。此外,加权平均的概念在经济学、工程学和医疗保健等各个领域也很常见。例如,在医疗保健中,可以使用加权平均来评估患者的结果,以考虑影响健康状况的不同因素。这确保了评估反映了治疗或干预的真实有效性,具体取决于所治疗案例的严重程度。总之,掌握加权平均的概念对于任何希望驾驭数据分析复杂性的人来说都是至关重要的。它通过纳入每个数据点的重要性提供了对平均值的细致理解,从而在学术和实际应用中做出更明智的决策。随着我们继续生成并依赖大量数据,能够应用加权平均计算无疑将增强我们的分析能力,并改善我们的决策过程。

相关单词

weighted

weighted详解:怎么读、什么意思、用法