average coordination number

简明释义

平均配位数;

英英释义

The average coordination number refers to the mean number of nearest neighboring atoms or ions surrounding a central atom in a crystal structure or complex.

平均配位数指的是在晶体结构或配合物中,围绕中心原子最近邻原子或离子的平均数量。

例句

1.Understanding the average coordination number 平均配位数 is crucial in materials science for designing new alloys.

理解平均配位数 average coordination number 在材料科学中对于设计新合金至关重要。

2.Researchers calculated the average coordination number 平均配位数 for various transition metals.

研究人员计算了各种过渡金属的平均配位数 average coordination number

3.The average coordination number 平均配位数 of a metal complex can indicate its geometry.

金属配合物的平均配位数 average coordination number 可以指示其几何形状。

4.The average coordination number 平均配位数 of a ligand can affect its binding affinity to a metal ion.

配体的平均配位数 average coordination number 可以影响其对金属离子的结合亲和力。

5.In crystallography, the average coordination number 平均配位数 helps determine the stability of a crystal structure.

在晶体学中,平均配位数 average coordination number 有助于确定晶体结构的稳定性。

作文

In the field of chemistry and materials science, the concept of coordination number plays a crucial role in understanding the structure and properties of various compounds. The term average coordination number refers to the average number of ligands or atoms that surround a central atom in a complex or a crystal lattice. This value is significant because it helps predict how a substance will behave in different environments, particularly in terms of its reactivity and stability.To delve deeper into the significance of the average coordination number, let's consider its application in coordination chemistry. Coordination compounds consist of a central metal atom bonded to surrounding molecules or ions, known as ligands. The arrangement and number of these ligands can greatly influence the chemical properties of the compound. For instance, a metal ion with a higher average coordination number may exhibit a different electronic configuration compared to one with a lower coordination number, leading to variations in color, magnetism, and reactivity.Moreover, the average coordination number can provide insight into the geometry of a compound. Different coordination numbers correspond to different geometrical arrangements. For example, a coordination number of four typically results in a tetrahedral shape, while six ligands around a central atom usually lead to an octahedral geometry. Understanding these geometrical arrangements is essential for predicting how substances will interact with one another, which is a fundamental aspect of chemical reactions.In addition to coordination chemistry, the average coordination number is also relevant in solid-state chemistry and crystallography. The arrangement of atoms in a solid material can be described by its crystal structure, which is characterized by its coordination number. In crystalline solids, the average coordination number can affect the material's density, melting point, and other physical properties. For example, in ionic compounds, a higher coordination number often leads to stronger ionic bonds, resulting in more stable structures.Furthermore, the average coordination number has implications in biological systems as well. Many biological molecules, such as enzymes and hemoglobin, rely on metal ions for their function. The coordination number of these metal ions can influence their ability to bind substrates and catalyze reactions. For instance, the iron in hemoglobin has a coordination number of six, allowing it to effectively bind oxygen molecules and transport them throughout the body. Understanding the average coordination number in these biological contexts can lead to advancements in drug design and therapeutic interventions.In conclusion, the concept of average coordination number is a fundamental aspect of various scientific disciplines, including chemistry, materials science, and biology. It provides valuable insights into the behavior, structure, and properties of compounds and materials. By understanding how the average coordination number influences the interactions between atoms and molecules, scientists can better predict and manipulate chemical reactions, develop new materials, and enhance our understanding of biological processes. As research continues to advance in these fields, the significance of the average coordination number will undoubtedly remain a key focus for future discoveries and innovations.

在化学和材料科学领域,配位数的概念在理解各种化合物的结构和性质方面起着至关重要的作用。术语平均配位数指的是在一个复杂体或晶格中,围绕中心原子的配体或原子的平均数量。这个数值非常重要,因为它有助于预测物质在不同环境中的行为,特别是在反应性和稳定性方面。为了更深入地探讨平均配位数的重要性,让我们考虑它在配位化学中的应用。配位化合物由一个中心金属原子与周围的分子或离子(称为配体)结合而成。这些配体的排列和数量可以极大地影响化合物的化学性质。例如,具有较高平均配位数的金属离子可能会表现出与具有较低配位数的金属离子不同的电子构型,从而导致颜色、磁性和反应性的变化。此外,平均配位数可以提供对化合物几何形状的洞察。不同的配位数对应不同的几何排列。例如,配位数为四通常导致四面体形状,而六个配体围绕中心原子通常形成八面体几何形状。理解这些几何排列对于预测物质之间的相互作用至关重要,这是化学反应的基本方面。除了配位化学之外,平均配位数在固态化学和晶体学中也很相关。固体材料中原子的排列可以通过其晶体结构来描述,晶体结构的特征是其配位数。在晶体固体中,平均配位数可以影响材料的密度、熔点和其他物理性质。例如,在离子化合物中,较高的配位数通常会导致更强的离子键,从而形成更稳定的结构。此外,平均配位数在生物系统中也有影响。许多生物分子,如酶和血红蛋白,依赖金属离子来发挥功能。这些金属离子的配位数可以影响它们结合底物和催化反应的能力。例如,血红蛋白中的铁具有六的配位数,使其能够有效地结合氧分子并将其运输到全身。在这些生物背景下理解平均配位数可以促进药物设计和治疗干预的发展。总之,平均配位数的概念是化学、材料科学和生物学等多个科学学科的基础方面。它提供了对化合物和材料行为、结构和性质的宝贵见解。通过理解平均配位数如何影响原子和分子之间的相互作用,科学家可以更好地预测和操控化学反应,开发新材料,并增强我们对生物过程的理解。随着研究在这些领域的不断推进,平均配位数的重要性无疑将继续成为未来发现和创新的关键焦点。