autoelectronic emission
简明释义
自动电子发射;
英英释义
例句
1.The phenomenon of autoelectronic emission is critical in understanding how certain materials can emit electrons when heated.
现象自电子发射在理解某些材料如何在加热时发射电子方面至关重要。
2.Understanding autoelectronic emission can lead to advancements in electron microscopy.
理解自电子发射可以推动电子显微镜的发展。
3.In vacuum tubes, autoelectronic emission allows for the flow of current without the need for a physical connection.
在真空管中,自电子发射使电流能够流动而无需物理连接。
4.The autoelectronic emission process is essential for the operation of many electronic devices.
自电子发射过程对许多电子设备的运行至关重要。
5.Scientists are studying the effects of temperature on autoelectronic emission to improve sensor technologies.
科学家们正在研究温度对自电子发射的影响,以改善传感器技术。
作文
In the field of physics and materials science, the concept of autoelectronic emission refers to a phenomenon where electrons are emitted from a material without the need for external energy sources. This process typically occurs when a material is subjected to certain conditions, such as high temperatures or specific surface characteristics that allow for the spontaneous release of electrons. Understanding autoelectronic emission is crucial for various applications, including vacuum technology, electron microscopy, and even in the development of advanced electronic devices.The principle behind autoelectronic emission can be traced back to the interaction between electrons and the material's surface. When electrons within a solid material gain sufficient energy, they can overcome the potential barrier at the surface and escape into the vacuum. This escape can happen through thermal excitation, where heat provides the necessary energy, or through other mechanisms that facilitate the emission of electrons. One of the most notable examples of autoelectronic emission is found in thermionic emission, where heated materials release electrons due to thermal energy. This phenomenon is widely utilized in vacuum tubes and cathode ray tubes, which were essential components in early electronic devices. In these applications, the controlled emission of electrons was fundamental to the operation of the devices.Another important aspect of autoelectronic emission is its relevance in modern technologies. For instance, in the realm of semiconductor devices, understanding how electrons are emitted from surfaces can lead to improvements in the efficiency and performance of transistors and diodes. Additionally, advancements in materials science have led to the discovery of new materials that exhibit enhanced autoelectronic emission properties, paving the way for innovative applications in electronics and photonics.Moreover, researchers are exploring the potential of autoelectronic emission in the development of new energy conversion systems. By harnessing the natural emission of electrons, scientists aim to create more efficient solar cells and energy harvesting devices. This approach could significantly impact the renewable energy sector, contributing to more sustainable energy solutions.In conclusion, autoelectronic emission is a fascinating phenomenon that plays a vital role in various scientific and technological fields. Its implications stretch from historical applications in vacuum technology to cutting-edge advancements in modern electronics and energy systems. As research continues to uncover the intricacies of this process, we can expect to see even more innovative uses of autoelectronic emission in the future, ultimately shaping the landscape of technology and energy utilization.
在物理学和材料科学领域,短语自电子发射指的是一种现象,其中材料中的电子在没有外部能量源的情况下被发射。这一过程通常发生在材料受到某些条件的影响时,例如高温或特定的表面特性,使得电子可以自发释放。理解自电子发射对于各种应用至关重要,包括真空技术、电子显微镜,甚至是先进电子设备的开发。自电子发射背后的原理可以追溯到电子与材料表面之间的相互作用。当固体材料中的电子获得足够的能量时,它们可以克服表面的势垒并逃逸到真空中。这种逃逸可以通过热激发发生,其中热量提供了必要的能量,或者通过其他机制促进电子的发射。自电子发射最显著的例子之一是在热电子发射中,材料在加热时由于热能释放电子。这种现象广泛应用于真空管和阴极射线管,这些都是早期电子设备的重要组成部分。在这些应用中,电子的受控发射对设备的操作至关重要。自电子发射的另一个重要方面是其在现代技术中的相关性。例如,在半导体设备领域,了解电子如何从表面发射可以提高晶体管和二极管的效率和性能。此外,材料科学的进步导致发现了具有增强的自电子发射特性的材料,为电子学和光子学中的创新应用铺平了道路。此外,研究人员正在探索自电子发射在新型能源转换系统开发中的潜力。通过利用电子的自然发射,科学家们旨在创造更高效的太阳能电池和能量收集设备。这种方法可能会对可再生能源行业产生重大影响,有助于实现更可持续的能源解决方案。总之,自电子发射是一种迷人的现象,在各种科学和技术领域中发挥着重要作用。它的影响从真空技术中的历史应用延伸到现代电子学和能源系统的前沿进展。随着研究不断揭示这一过程的复杂性,我们可以期待在未来看到更多创新的自电子发射应用,最终塑造技术和能源利用的格局。
相关单词