atomic photoelectric effect

简明释义

原子光电效应;

英英释义

The atomic photoelectric effect refers to the phenomenon where electrons are emitted from an atom when it absorbs photons of sufficient energy, typically in the ultraviolet or higher frequency ranges.

原子光电效应是指当原子吸收足够能量的光子(通常在紫外线或更高频率范围内)时,电子从原子中被释放的现象。

例句

1.The atomic photoelectric effect 原子光电效应 is crucial for understanding light-matter interactions.

理解光与物质相互作用时,原子光电效应是至关重要的。

2.Research on the atomic photoelectric effect 原子光电效应 has opened new avenues in photonics.

原子光电效应的研究为光子学开辟了新的途径。

3.Scientists are exploring how the atomic photoelectric effect 原子光电效应 can be utilized in solar panel technology.

科学家们正在探索如何在太阳能电池技术中利用原子光电效应

4.In his lecture, he explained the implications of the atomic photoelectric effect 原子光电效应 for modern electronics.

在他的讲座中,他解释了原子光电效应对现代电子学的影响。

5.The study of the atomic photoelectric effect 原子光电效应 has led to significant advancements in quantum physics.

原子光电效应的研究已经推动了量子物理学的重大进展。

作文

The concept of the atomic photoelectric effect plays a pivotal role in understanding the interaction between light and matter. This phenomenon occurs when photons, which are particles of light, strike an atom and transfer their energy to electrons within that atom. As a result, these electrons can be ejected from the atom if the energy of the incoming photon exceeds the binding energy of the electron. This principle was first explained by Albert Einstein in 1905, for which he received the Nobel Prize in Physics in 1921. The atomic photoelectric effect not only provided evidence for the particle nature of light but also laid the groundwork for quantum mechanics.In essence, the atomic photoelectric effect illustrates how light behaves both as a wave and as a particle. When light shines on a metal surface, it can cause the emission of electrons if the light's frequency is above a certain threshold. This threshold is unique to each material and depends on the metal's work function, which is the minimum energy needed to remove an electron from the surface. This relationship between light frequency and electron emission is crucial in various applications, such as in the functioning of photoelectric cells, which convert light energy into electrical energy.Furthermore, the atomic photoelectric effect has significant implications in the field of technology. For instance, it is utilized in solar panels, where sunlight is converted into electricity through the photoelectric effect. The efficiency of these panels largely depends on the materials used and their ability to absorb photons effectively. Understanding the atomic photoelectric effect allows scientists and engineers to innovate and improve renewable energy technologies, contributing to a more sustainable future.Moreover, the atomic photoelectric effect has applications beyond energy generation. It is also used in various scientific instruments, such as photomultiplier tubes and cameras, which rely on the detection of light and its conversion into electronic signals. In medical imaging, for example, the principles of the atomic photoelectric effect are employed in X-ray machines, where X-rays interact with matter to produce images of internal body structures.As we delve deeper into the quantum realm, the atomic photoelectric effect serves as a reminder of the intricate relationship between light and matter. It challenges our classical intuitions and invites us to explore the underlying principles that govern the universe. The ongoing research in this area continues to unveil new phenomena and applications, further enhancing our understanding of the physical world.In conclusion, the atomic photoelectric effect is not merely a theoretical concept; it is a fundamental aspect of modern physics with far-reaching consequences in technology and science. Its discovery marked a significant milestone in our comprehension of light-matter interactions and opened doors to numerous innovations. As we continue to harness the power of the atomic photoelectric effect, we pave the way for advancements that can shape our future, making it essential for both scientific inquiry and practical applications.

原子光电效应的概念在理解光与物质之间的相互作用中发挥着关键作用。该现象发生在光子(即光的粒子)撞击原子并将其能量转移给该原子内的电子时。结果,如果入射光子的能量超过电子的束缚能量,这些电子就会被从原子中弹出。这个原理最早是由阿尔伯特·爱因斯坦在1905年解释的,因而他在1921年获得了诺贝尔物理学奖。原子光电效应不仅为光的粒子特性提供了证据,还为量子力学奠定了基础。从本质上讲,原子光电效应展示了光如何同时表现为波和粒子。当光照射到金属表面时,如果光的频率超过某个阈值,它可以导致电子的发射。这个阈值对每种材料都是独特的,并且取决于金属的功函数,即从表面移除电子所需的最低能量。这种光频率与电子发射之间的关系在各种应用中至关重要,例如在光电池的功能中,光电池将光能转换为电能。此外,原子光电效应在技术领域具有重要意义。例如,它被用于太阳能电池板,阳光通过光电效应转化为电能。这些电池板的效率在很大程度上取决于所用材料及其有效吸收光子的能力。理解原子光电效应使科学家和工程师能够创新和改进可再生能源技术,为更可持续的未来作出贡献。此外,原子光电效应的应用超越了能源生成。它还用于各种科学仪器,例如光电倍增管和相机,这些仪器依赖于光的探测及其转化为电子信号。在医学成像中,例如,原子光电效应的原理被用于X射线机中,X射线与物质相互作用以产生内部身体结构的图像。当我们深入探索量子领域时,原子光电效应提醒我们光与物质之间的复杂关系。它挑战了我们的经典直觉,并邀请我们探索支配宇宙的基本原理。该领域的持续研究继续揭示新的现象和应用,进一步增强我们对物理世界的理解。总之,原子光电效应不仅仅是一个理论概念;它是现代物理学的一个基本方面,具有深远的科技和科学影响。它的发现标志着我们对光-物质相互作用理解的重要里程碑,并为众多创新打开了大门。随着我们继续利用原子光电效应的力量,我们为塑造未来的进步铺平了道路,这对科学探究和实际应用都是至关重要的。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

photoelectric

photoelectric详解:怎么读、什么意思、用法