atomic orbital
简明释义
原子轨函数;
英英释义
例句
1.In quantum mechanics, each atomic orbital 原子轨道 can hold a maximum of two electrons.
在量子力学中,每个原子轨道最多可以容纳两个电子。
2.The shape of an atomic orbital 原子轨道 determines how electrons are distributed around the nucleus.
一个原子轨道的形状决定了电子如何分布在原子核周围。
3.Understanding atomic orbitals 原子轨道 is essential for predicting molecular shapes.
理解原子轨道对于预测分子形状是必不可少的。
4.The atomic orbitals 原子轨道 of hydrogen are simpler than those of heavier elements.
氢的原子轨道比重元素的要简单。
5.Chemists use the concept of atomic orbitals 原子轨道 to explain chemical bonding.
化学家使用原子轨道的概念来解释化学键合。
作文
The concept of atomic orbital is fundamental to understanding the behavior of electrons in atoms. An atomic orbital is a mathematical function that describes the wave-like behavior of an electron in an atom. This concept was developed in the early 20th century as scientists sought to explain the arrangement of electrons around the nucleus of an atom. The atomic orbital provides a visual representation of where an electron is likely to be found, rather than a fixed path as suggested by earlier models such as the Bohr model.There are several different types of atomic orbitals, each with unique shapes and energy levels. The most common types include s, p, d, and f orbitals. The s orbitals are spherical in shape and can hold a maximum of two electrons. The p orbitals are dumbbell-shaped and can hold up to six electrons, while d and f orbitals have more complex shapes and can accommodate even more electrons. Understanding these shapes is crucial for predicting how atoms will bond and interact with one another.One of the key principles associated with atomic orbitals is the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same set of quantum numbers. This principle helps to explain why electrons fill atomic orbitals in a specific order, starting from the lowest energy level and moving up to higher levels. This orderly filling of atomic orbitals is represented by the Aufbau principle, which provides a framework for understanding the electron configurations of elements in the periodic table.The arrangement of electrons within atomic orbitals directly impacts the chemical properties of an element. For instance, elements with similar electron configurations tend to exhibit similar chemical behavior. This is evident in groups of the periodic table, where elements share similar valence electron arrangements within their outermost atomic orbitals. As a result, the study of atomic orbitals is not only essential for understanding atomic structure but also for predicting how different elements will react with one another.In addition to their role in chemical bonding, atomic orbitals also play a significant role in spectroscopy, a technique used to analyze the interaction of light with matter. When atoms absorb or emit light, it is often due to transitions between different atomic orbitals. By studying these transitions, scientists can gain insights into the energy levels of electrons and the overall electronic structure of atoms.In conclusion, the concept of atomic orbital is a cornerstone of modern chemistry and physics. It allows us to visualize and understand the distribution of electrons around an atom’s nucleus and serves as a basis for explaining a wide range of chemical phenomena. As we continue to explore the complexities of atomic structure, the significance of atomic orbitals remains ever relevant, guiding our understanding of the natural world at its most fundamental level.
“原子轨道”这一概念是理解电子在原子中行为的基础。原子轨道是描述电子在原子中波动行为的数学函数。这个概念是在20世纪初发展起来的,科学家们试图解释电子围绕原子核的排列。原子轨道提供了一个视觉表现,展示了电子可能出现的位置,而不是早期模型如玻尔模型所建议的固定路径。有几种不同类型的原子轨道,每种都有独特的形状和能量水平。最常见的类型包括s、p、d和f轨道。s轨道呈球形,最多可以容纳两个电子。p轨道呈哑铃形,最多可以容纳六个电子,而d和f轨道则具有更复杂的形状,能够容纳更多的电子。理解这些形状对预测原子如何结合和相互作用至关重要。与原子轨道相关的一个关键原则是泡利不相容原理,该原理指出,原子中的两个电子不能具有相同的量子数。这一原则有助于解释为何电子以特定顺序填充原子轨道,从最低能量水平开始,逐步上升到更高的水平。这种有序的原子轨道填充由 Aufbau 原则表示,它为理解元素在周期表中的电子配置提供了框架。电子在原子轨道中的排列直接影响元素的化学性质。例如,具有相似电子配置的元素往往表现出相似的化学行为。这在周期表的族中显而易见,元素在其最外层原子轨道中的价电子排列相似。因此,研究原子轨道不仅对理解原子结构至关重要,而且对预测不同元素之间的反应也至关重要。除了在化学键合中的作用外,原子轨道在光谱学中也发挥着重要作用,这是一种分析光与物质相互作用的技术。当原子吸收或发射光时,通常是由于不同原子轨道之间的跃迁。通过研究这些跃迁,科学家可以深入了解电子的能级以及原子的整体电子结构。总之,原子轨道的概念是现代化学和物理学的基石。它使我们能够可视化和理解电子围绕原子核的分布,并作为解释各种化学现象的基础。随着我们继续探索原子结构的复杂性,原子轨道的重要性依然显著,指导我们理解自然界最基本层面的世界。
相关单词