atomic fusion
简明释义
1. 核聚变; 2. 核合成;
英英释义
Atomic fusion is the process in which two atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process. | 原子融合是指两个原子核结合形成一个更重的核,并在此过程中释放出大量能量的过程。 |
例句
1.Scientists are researching atomic fusion 原子聚变 as a potential source of clean energy.
科学家们正在研究原子聚变 atomic fusion 作为一种潜在的清洁能源。
2.The process of atomic fusion 原子聚变 is essential for the energy production in stars.
在恒星的能量生产中,原子聚变 atomic fusion 过程是至关重要的。
3.The sun generates energy through atomic fusion 原子聚变, converting hydrogen into helium.
太阳通过原子聚变 atomic fusion 产生能量,将氢转化为氦。
4.A breakthrough in atomic fusion 原子聚变 technology could revolutionize power generation.
在原子聚变 atomic fusion 技术上的突破可能会彻底改变电力生产。
5.The ITER project aims to demonstrate the feasibility of atomic fusion 原子聚变 as an energy source.
国际热核聚变实验堆(ITER)项目旨在展示原子聚变 atomic fusion 作为能源的可行性。
作文
In the realm of physics and energy production, the concept of atomic fusion plays a pivotal role. 原子融合, commonly known as nuclear fusion, is the process by which two light atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process. This phenomenon is not only fundamental to the understanding of stellar processes but also holds the key to the future of energy generation on Earth.The sun, our closest star, is a natural example of atomic fusion. Within its core, hydrogen nuclei collide with such immense force that they overcome their natural repulsion due to electromagnetic forces. As these hydrogen atoms fuse, they create helium and release energy in the form of light and heat, which sustains life on our planet. The energy produced through atomic fusion in stars is what makes them shine brightly and provides the necessary warmth for life.Scientists have long been fascinated by the potential of harnessing atomic fusion as a clean and virtually limitless source of energy. Unlike fossil fuels, which emit greenhouse gases and contribute to global warming, the byproducts of atomic fusion are minimal and do not pose a threat to the environment. Furthermore, the fuel for atomic fusion, primarily isotopes of hydrogen such as deuterium and tritium, can be derived from seawater and lithium, making it abundantly available.However, achieving controlled atomic fusion on Earth is a monumental challenge. The conditions required for fusion—extremely high temperatures and pressures—are difficult to replicate. Scientists have been working on various approaches to achieve this, including magnetic confinement in tokamaks and inertial confinement using lasers. Projects like ITER (International Thermonuclear Experimental Reactor) aim to demonstrate the feasibility of atomic fusion as a practical energy source.If successful, atomic fusion could revolutionize the way we produce energy. It promises a future where energy is not only sustainable but also abundant, allowing for advancements in technology and improvements in quality of life. Imagine a world powered by the same processes that fuel the stars, providing clean energy without the environmental degradation associated with fossil fuels.Moreover, the implications of mastering atomic fusion extend beyond just energy production. It could lead to advancements in various fields, including medicine, space exploration, and materials science. For instance, the high-energy particles produced during atomic fusion reactions could be harnessed for medical applications, such as cancer treatment through targeted radiation therapy.In conclusion, atomic fusion represents both a scientific marvel and a potential solution to some of the most pressing energy challenges we face today. While there are significant hurdles to overcome, the pursuit of atomic fusion research continues to inspire hope for a cleaner, more sustainable energy future. As we strive to unlock the secrets of the universe, the quest for harnessing atomic fusion might just illuminate the path toward a brighter tomorrow.
在物理学和能源生产领域,原子融合的概念扮演着关键角色。原子融合,通常称为核聚变,是两个轻原子核结合形成一个重核的过程,并在此过程中释放出大量能量。这一现象不仅是理解恒星过程的基础,还为地球未来的能源生成提供了关键。我们的太阳,最近的恒星,是原子融合的自然例子。在其核心,氢核以巨大的力量碰撞,克服了由于电磁力造成的自然排斥。当这些氢原子融合时,它们产生氦并以光和热的形式释放能量,这使得我们的星球得以维持生命。通过原子融合在恒星中产生的能量使它们闪耀光芒,并为生命提供所需的温暖。科学家们长期以来一直对利用原子融合作为一种清洁且几乎无限的能源来源充满兴趣。与排放温室气体并导致全球变暖的化石燃料不同,原子融合的副产品极少,不会对环境构成威胁。此外,原子融合的燃料,主要是氢的同位素,如氘和氚,可以从海水和锂中提取,使其丰富可得。然而,在地球上实现受控的原子融合是一项巨大的挑战。实现聚变所需的条件——极高的温度和压力——难以复制。科学家们一直在研究多种方法来实现这一目标,包括在托卡马克中进行的磁约束和使用激光的惯性约束。像国际热核聚变实验反应堆(ITER)这样的项目旨在证明原子融合作为一种实用能源来源的可行性。如果成功,原子融合可能彻底改变我们生产能源的方式。它承诺一个不仅可持续而且几乎无限的能源未来,使技术进步和生活质量的改善成为可能。想象一下,一个由与恒星相同的过程驱动的世界,提供清洁能源,而不会对环境造成与化石燃料相关的破坏。此外,掌握原子融合的意义超越了能源生产。它可能导致各个领域的进步,包括医学、太空探索和材料科学。例如,在原子融合反应中产生的高能粒子可以用于医疗应用,如通过靶向放射治疗进行癌症治疗。总之,原子融合既代表了一种科学奇迹,也可能成为解决我们今天面临的一些最紧迫的能源挑战的潜在解决方案。尽管还有显著的障碍需要克服,但对原子融合研究的追求继续激发人们对清洁、可持续能源未来的希望。当我们努力解锁宇宙的秘密时,掌握原子融合的追求可能正照亮通往更美好明天的道路。
相关单词