atomic coordinates
简明释义
原子坐标;
英英释义
例句
1.The molecular dynamics simulation requires atomic coordinates 原子坐标 to start the calculations.
分子动力学模拟需要原子坐标来开始计算。
2.The software calculates the atomic coordinates 原子坐标 of the molecule for visualization.
该软件计算分子的原子坐标以便于可视化。
3.In computational chemistry, atomic coordinates 原子坐标 are essential for predicting molecular behavior.
在计算化学中,原子坐标对于预测分子行为至关重要。
4.Researchers often share atomic coordinates 原子坐标 in their publications to facilitate replication of experiments.
研究人员通常在他们的出版物中分享原子坐标以促进实验的重复。
5.To determine the structure of a protein, scientists need accurate atomic coordinates 原子坐标 from X-ray crystallography.
为了确定蛋白质的结构,科学家需要来自X射线晶体学的准确原子坐标。
作文
In the field of chemistry and physics, understanding the structure of molecules is crucial for many applications, from drug design to materials science. One key concept in this area is atomic coordinates, which refer to the specific three-dimensional positions of atoms within a molecule or crystal lattice. These coordinates are essential for visualizing molecular structures and understanding how different atoms interact with each other. By determining the atomic coordinates of a compound, scientists can predict its chemical properties and reactivity. For example, when researchers study a new pharmaceutical compound, they often start by analyzing its atomic coordinates. This analysis allows them to create a model of the molecule that reveals how it might bind to biological targets, such as proteins or enzymes. The precise arrangement of atoms can significantly influence the effectiveness of a drug, making the determination of atomic coordinates a vital step in the drug development process. Moreover, atomic coordinates play a pivotal role in the field of crystallography, where scientists use X-ray diffraction to determine the arrangement of atoms in crystalline materials. When X-rays are directed at a crystal, they are scattered by the electrons surrounding the atoms, creating a diffraction pattern. By analyzing this pattern, researchers can calculate the atomic coordinates of the atoms within the crystal structure. This information is invaluable for developing new materials with specific properties, such as superconductors or catalysts. In computational chemistry, atomic coordinates are also fundamental. Simulations of molecular dynamics rely heavily on accurate atomic coordinates to predict how molecules will behave over time. These simulations can provide insights into processes such as protein folding or the interaction between different molecules in a solution. Understanding the atomic coordinates allows chemists to visualize these processes and make predictions about the behavior of complex systems. Furthermore, the importance of atomic coordinates extends beyond traditional chemistry and physics. In fields like materials science and nanotechnology, the arrangement of atoms at the nanoscale can lead to entirely new properties and functionalities. For instance, the unique characteristics of carbon nanotubes and graphene are largely due to their atomic coordinates and the way in which carbon atoms are arranged. Researchers are constantly exploring how to manipulate these coordinates to engineer materials with desired attributes. In conclusion, atomic coordinates are a fundamental aspect of understanding molecular and atomic structures across various scientific disciplines. They provide essential information that enables researchers to explore the intricate relationships between atomic arrangements and the resulting physical and chemical properties of substances. As technology advances and our ability to manipulate materials at the atomic level improves, the significance of atomic coordinates will only continue to grow, paving the way for innovations in medicine, materials science, and beyond.
在化学和物理学领域,理解分子的结构对于许多应用至关重要,从药物设计到材料科学。其中一个关键概念是原子坐标,它指的是分子或晶格中原子的特定三维位置。这些坐标对于可视化分子结构和理解不同原子之间的相互作用至关重要。通过确定化合物的原子坐标,科学家可以预测其化学性质和反应性。例如,当研究人员研究一种新的药物化合物时,他们通常会首先分析其原子坐标。这种分析使他们能够创建一个分子模型,揭示它可能如何与生物靶点(如蛋白质或酶)结合。原子的精确排列会显著影响药物的有效性,因此确定原子坐标是药物开发过程中的一个重要步骤。此外,原子坐标在晶体学领域也发挥着关键作用,科学家使用X射线衍射来确定晶体材料中原子的排列。当X射线照射到晶体上时,它们会被原子周围的电子散射,形成衍射图案。通过分析这个模式,研究人员可以计算出晶体结构中原子的原子坐标。这些信息对于开发具有特定属性的新材料(如超导体或催化剂)是无价的。在计算化学中,原子坐标也是基础。分子动力学的模拟在很大程度上依赖于准确的原子坐标来预测分子随时间的行为。这些模拟可以提供有关蛋白质折叠或不同分子在溶液中相互作用等过程的见解。理解原子坐标使化学家能够可视化这些过程并对复杂系统的行为做出预测。此外,原子坐标的重要性超出了传统的化学和物理学。在材料科学和纳米技术等领域,纳米尺度上原子的排列可能导致完全不同的属性和功能。例如,碳纳米管和石墨烯的独特特性在很大程度上归因于它们的原子坐标及碳原子的排列方式。研究人员不断探索如何操纵这些坐标,以工程化具有所需属性的材料。总之,原子坐标是理解各科学学科中分子和原子结构的基本方面。它们提供了重要信息,使研究人员能够探索原子排列与物质的物理和化学性质之间的复杂关系。随着技术的进步和我们在原子水平上操纵材料的能力提高,原子坐标的重要性将只会继续增长,为医学、材料科学等领域的创新铺平道路。
相关单词