atomic bond
简明释义
原子键;
英英释义
例句
1.The atomic bond 原子键 in diamond is much stronger than that in graphite.
钻石中的原子键 原子键比石墨中的要强得多。
2.When two atoms share electrons, they form a covalent atomic bond 原子键.
当两个原子共享电子时,它们形成一个共价原子键 原子键。
3.The atomic bond 原子键 in metals allows them to conduct electricity efficiently.
金属中的原子键 原子键使它们能够有效地导电。
4.The strength of the atomic bond 原子键 between hydrogen and oxygen determines the properties of water.
氢和氧之间的原子键 原子键的强度决定了水的性质。
5.In organic chemistry, understanding the atomic bond 原子键 is crucial for predicting molecular behavior.
在有机化学中,理解原子键 原子键对于预测分子行为至关重要。
作文
In the study of chemistry, one fundamental concept that we must grasp is the idea of an atomic bond. An atomic bond refers to the attractive force that holds atoms together within a molecule or compound. This bond is crucial for the formation of various substances and plays a significant role in determining their properties. Understanding how atomic bonds work can help us comprehend the nature of matter and the interactions between different elements.There are primarily three types of atomic bonds: ionic bonds, covalent bonds, and metallic bonds. Ionic bonds occur when one atom donates an electron to another atom, resulting in the formation of charged ions. These oppositely charged ions attract each other, creating a strong bond. For example, when sodium (Na) reacts with chlorine (Cl), sodium donates an electron to chlorine, forming Na+ and Cl- ions, which bond together to create sodium chloride, or table salt.On the other hand, covalent bonds involve the sharing of electrons between two atoms. This type of bond is common among nonmetals. For instance, in a water molecule (H2O), each hydrogen atom shares an electron with the oxygen atom, resulting in a stable configuration. The strength of a covalent bond depends on the number of shared electrons; double and triple bonds involve sharing two or three pairs of electrons, respectively, making them stronger than single bonds.Metallic bonds are unique as they occur between metal atoms. In this type of bond, electrons are not shared or transferred but are instead delocalized and move freely throughout the structure. This 'sea of electrons' allows metals to conduct electricity and heat efficiently. It also accounts for the malleability and ductility of metals, enabling them to be shaped into wires or sheets without breaking.The significance of atomic bonds extends beyond mere chemical reactions. They are responsible for the physical properties of materials. For example, the hardness of diamonds, which have a strong covalent bonding structure, contrasts sharply with the softness of graphite, where layers of carbon atoms are held together by weaker van der Waals forces. This difference in bonding explains why diamonds are prized for their durability while graphite is used as a lubricant.Moreover, the study of atomic bonds has profound implications in various fields, including medicine, engineering, and environmental science. In pharmaceuticals, understanding how drugs interact at the atomic level can lead to the development of more effective treatments. In materials science, researchers explore atomic bonds to create stronger, lighter materials that can withstand extreme conditions.In conclusion, the concept of an atomic bond is essential for anyone studying chemistry or related fields. By understanding the different types of atomic bonds and their implications, we gain insights into the behavior of matter and the principles that govern our world. Whether it’s the creation of new materials or the development of innovative medical therapies, the knowledge of atomic bonds is foundational to advancing science and technology. As we continue to explore the intricacies of atomic interactions, we unlock the potential for future discoveries that can change our lives for the better.
在化学研究中,我们必须掌握的一个基本概念是原子键的概念。原子键指的是将原子结合在一起形成分子或化合物的吸引力。这种键对于各种物质的形成至关重要,并在决定其性质方面发挥着重要作用。理解原子键的工作原理可以帮助我们理解物质的本质以及不同元素之间的相互作用。主要有三种类型的原子键:离子键、共价键和金属键。离子键发生在一个原子向另一个原子捐赠电子时,导致带电离子的形成。这些带相反电荷的离子相互吸引,形成强键。例如,当钠(Na)与氯(Cl)反应时,钠向氯捐赠一个电子,形成Na+和Cl-离子,它们结合在一起形成氯化钠,即食盐。另一方面,共价键涉及两个原子之间电子的共享。这种类型的键在非金属中很常见。例如,在水分子(H2O)中,每个氢原子与氧原子共享一个电子,从而形成稳定的构型。共价键的强度取决于共享电子的数量;双键和三键涉及共享两对或三对电子,因此比单键更强。金属键是独特的,因为它发生在金属原子之间。在这种类型的键中,电子不是被共享或转移,而是去局部化并在结构中自由移动。这种“电子海”使金属能够有效地导电和导热。它还解释了金属的延展性和可锻性,使它们能够在不破裂的情况下被塑造成线或片。原子键的重要性超越了简单的化学反应。它们负责材料的物理性质。例如,钻石的硬度,钻石具有强的共价键结构,与石墨的柔软性形成鲜明对比,石墨中的碳原子层通过较弱的范德华力相互结合。这种键的差异解释了为什么钻石因其耐用性而受到珍视,而石墨则用作润滑剂。此外,原子键的研究在医学、工程和环境科学等多个领域具有深远的影响。在制药行业,了解药物在原子水平的相互作用可以导致更有效治疗方法的发展。在材料科学中,研究人员探索原子键以创造能够承受极端条件的更强、更轻的材料。总之,原子键的概念对于任何学习化学或相关领域的人来说都是至关重要的。通过理解不同类型的原子键及其影响,我们获得了对物质行为和支配我们世界的原则的洞察。无论是新材料的创造还是创新医疗疗法的发展,对原子键的知识都是推动科学和技术进步的基础。当我们继续探索原子相互作用的复杂性时,我们解锁了未来发现的潜力,这些发现可以改善我们的生活。
相关单词