asymmetry of deflection

简明释义

偏转的不对称性;

英英释义

Asymmetry of deflection refers to a condition where the displacement or bending of an object is uneven or not equal in all directions when subjected to forces or loads.

偏转的不对称性指的是在施加力或载荷时,物体的位移或弯曲在各个方向上不均匀或不相等的情况。

例句

1.The researchers published a paper discussing the implications of asymmetry of deflection in composite materials.

研究人员发表了一篇论文,讨论了复合材料中偏转的不对称性的影响。

2.To improve stability, we need to address the asymmetry of deflection in the current design.

为了提高稳定性,我们需要解决当前设计中的偏转的不对称性

3.During the testing phase, the team observed an asymmetry of deflection that required further analysis.

在测试阶段,团队观察到一种偏转的不对称性,需要进一步分析。

4.The asymmetry of deflection in the beam was caused by uneven loading conditions.

梁的偏转的不对称性是由于不均匀的载荷条件造成的。

5.The engineer noted the asymmetry of deflection in the bridge design, which could lead to structural issues.

工程师注意到桥梁设计中的偏转的不对称性,这可能会导致结构问题。

作文

In the field of engineering and physics, understanding the behavior of materials under various forces is crucial. One important concept that often arises in structural analysis is the asymmetry of deflection. This term refers to the uneven displacement of a structure when subjected to loads, meaning that the way a structure bends or deforms is not uniform across its length. The asymmetry of deflection can significantly affect the performance and safety of buildings, bridges, and other structures. The asymmetry of deflection occurs due to several factors, including material properties, load distribution, and boundary conditions. For instance, if a beam is loaded more heavily on one side than the other, the resulting deflection will be greater on the loaded side, leading to an asymmetry of deflection. This phenomenon is critical for engineers to consider when designing structures, as it can lead to unexpected failures if not properly accounted for. To illustrate this concept, let’s consider a simple example of a cantilever beam. When a load is applied at the free end of the beam, the deflection is greatest at that point and decreases towards the fixed support. However, if the load is not centered or if there are additional forces acting on one side of the beam, the deflection will become asymmetric. This asymmetry of deflection can lead to stress concentrations, which may cause cracks or even structural failure over time. Engineers use various methods to analyze and predict the asymmetry of deflection. Finite element analysis (FEA) is one common technique that allows for detailed examination of how different materials and shapes respond to loads. By simulating various scenarios, engineers can identify potential issues related to asymmetry of deflection and make necessary adjustments to their designs. Moreover, understanding the asymmetry of deflection is not only important for new constructions but also for the maintenance of existing structures. Regular inspections can help identify signs of uneven deflection, which may indicate underlying problems such as material degradation or improper loading conditions. By addressing these issues early, engineers can prevent more severe damage and ensure the longevity of the structure. In conclusion, the asymmetry of deflection is a fundamental concept in structural engineering that highlights the importance of understanding how structures behave under load. By taking into account the factors that contribute to this phenomenon, engineers can design safer and more efficient structures. As we continue to advance in technology and materials science, the ability to accurately predict and manage the asymmetry of deflection will remain a vital aspect of engineering practice, ensuring that our built environment remains safe and resilient for future generations.

在工程和物理学领域,理解材料在各种力作用下的行为至关重要。一个常常出现的重要概念是挠度的不对称性。这个术语指的是当结构受到载荷时,结构的不均匀位移,意味着结构弯曲或变形的方式在其长度上并不均匀。挠度的不对称性会显著影响建筑、桥梁和其他结构的性能和安全性。挠度的不对称性的发生是由于多个因素,包括材料属性、载荷分布和边界条件。例如,如果一根梁的一侧受载重较重,另一侧则较轻,所产生的挠度将在受载重的一侧更大,从而导致挠度的不对称性。这一现象对于工程师在设计结构时至关重要,因为如果没有适当考虑,它可能导致意想不到的故障。为了说明这一概念,让我们考虑一个简单的悬臂梁示例。当载荷施加在梁的自由端时,挠度在该点最大,并向固定支撑方向减小。然而,如果载荷没有居中,或者在梁的一侧有额外的力作用,挠度将变得不对称。这种挠度的不对称性可能导致应力集中,随着时间的推移可能导致裂缝甚至结构失败。工程师使用各种方法来分析和预测挠度的不对称性。有限元分析(FEA)是一个常用的技术,它允许详细检查不同材料和形状如何响应载荷。通过模拟各种场景,工程师可以识别与挠度的不对称性相关的潜在问题,并对他们的设计进行必要的调整。此外,理解挠度的不对称性不仅对新建构造重要,对现有结构的维护也同样重要。定期检查可以帮助识别不均匀挠度的迹象,这可能表明材料退化或加载条件不当等潜在问题。通过及早解决这些问题,工程师可以防止更严重的损坏,确保结构的持久性。总之,挠度的不对称性是结构工程中的一个基本概念,突显了理解结构在载荷下如何行为的重要性。通过考虑导致这一现象的因素,工程师可以设计出更安全、更高效的结构。随着我们在技术和材料科学上的不断进步,准确预测和管理挠度的不对称性的能力将继续成为工程实践中的一个重要方面,确保我们建造的环境在未来几代人中保持安全和韧性。

相关单词

asymmetry

asymmetry详解:怎么读、什么意思、用法

deflection

deflection详解:怎么读、什么意思、用法