asymmetrical atom
简明释义
不对称原子;
英英释义
例句
1.When studying stereochemistry, identifying the asymmetrical atom is crucial for understanding molecular behavior.
在研究立体化学时,识别不对称原子对于理解分子行为至关重要。
2.In pharmaceuticals, drugs designed around an asymmetrical atom can have different effects based on their chirality.
在制药行业,围绕不对称原子设计的药物可能根据其手性产生不同的效果。
3.The presence of an asymmetrical atom in a compound often leads to chiral centers.
化合物中存在不对称原子通常会导致手性中心。
4.An asymmetrical atom in a polymer chain can influence its mechanical properties.
聚合物链中的不对称原子可以影响其机械性能。
5.In organic chemistry, a molecule with an asymmetrical atom can exhibit optical activity.
在有机化学中,具有不对称原子的分子可以表现出光学活性。
作文
In the realm of chemistry and molecular biology, the concept of an asymmetrical atom plays a crucial role in understanding the behavior and interactions of various substances. An asymmetrical atom refers to an atom that lacks symmetry in its structure, which can significantly influence the properties of the molecules it forms. This asymmetry often arises from the arrangement of different atoms or groups around a central atom, leading to chiral molecules that are not superimposable on their mirror images. Such molecules are essential in many biological processes, including the functioning of enzymes and the interaction of drugs with biological systems.One of the most notable examples of asymmetrical atoms is found in organic chemistry, specifically in the study of chiral centers. A chiral center is typically a carbon atom bonded to four different substituents, creating two distinct configurations known as enantiomers. These enantiomers can have vastly different biological activities; for instance, one may be therapeutically beneficial while the other could be harmful or inactive. This phenomenon highlights the importance of understanding asymmetrical atoms in drug design and development, where the goal is to create compounds that interact specifically with biological targets.The significance of asymmetrical atoms extends beyond pharmaceuticals. In the field of materials science, researchers explore how asymmetry at the atomic level can lead to unique physical properties in materials. For example, certain crystalline structures exhibit piezoelectric properties due to the arrangement of asymmetrical atoms, enabling them to generate an electric charge when subjected to mechanical stress. This principle has paved the way for advancements in sensors, actuators, and energy harvesting devices.Moreover, the study of asymmetrical atoms is not limited to static structures. In dynamic systems, such as those involving catalysts, the presence of asymmetrical atoms can influence reaction pathways and rates. Catalysts that incorporate asymmetrical atoms can provide specific environments for reactions to occur, enhancing selectivity and efficiency. This aspect is particularly relevant in green chemistry, where the goal is to develop sustainable processes that minimize waste and energy consumption.In conclusion, the concept of an asymmetrical atom is fundamental to various scientific disciplines, including chemistry, biology, and materials science. Its implications are far-reaching, affecting everything from drug efficacy to the development of advanced materials. As research continues to unravel the complexities of asymmetrical atoms, we can expect to see even more innovative applications and a deeper understanding of how these unique atomic structures influence the world around us. Emphasizing the study of asymmetrical atoms will undoubtedly lead to significant breakthroughs that enhance our quality of life and expand our technological capabilities.
在化学和分子生物学领域,不对称原子的概念在理解各种物质的行为和相互作用中起着至关重要的作用。不对称原子指的是结构上缺乏对称性的原子,这可能会显著影响其形成的分子的性质。这种不对称性通常是由于不同原子或基团围绕中心原子的排列而产生的,导致手性分子的形成,这些分子与其镜像不可重叠。这些分子在许多生物过程中是必不可少的,包括酶的功能以及药物与生物系统的相互作用。一个最显著的不对称原子的例子可以在有机化学中找到,特别是在手性中心的研究中。手性中心通常是一个与四个不同取代基结合的碳原子,形成两种不同的构型,称为对映体。这些对映体可能具有截然不同的生物活性;例如,一个可能具有治疗效果,而另一个可能有害或无效。这个现象突显了在药物设计和开发中理解不对称原子的重要性,其目标是创造能够特异性与生物靶点相互作用的化合物。不对称原子的重要性不仅限于制药领域。在材料科学领域,研究人员探索原子级别的不对称性如何导致材料中独特的物理性质。例如,某些晶体结构由于不对称原子的排列而表现出压电特性,使它们在受到机械应力时能够产生电荷。这一原理为传感器、执行器和能量收集装置的进步铺平了道路。此外,不对称原子的研究并不限于静态结构。在涉及催化剂的动态系统中,不对称原子的存在可以影响反应途径和速率。包含不对称原子的催化剂可以为反应提供特定的环境,从而增强选择性和效率。这一方面在绿色化学中特别相关,绿色化学的目标是开发最小化废物和能源消耗的可持续过程。总之,不对称原子的概念是化学、生物学和材料科学等多个科学学科的基础。它的影响深远,涉及从药物疗效到先进材料的发展。随着研究不断揭示不对称原子的复杂性,我们可以期待看到更多创新应用以及对这些独特原子结构如何影响我们周围世界的更深理解。强调对不对称原子的研究无疑将导致显著的突破,提升我们的生活质量,扩展我们的技术能力。
相关单词