centrosymmetric crystal
简明释义
中心对称晶伐;
英英释义
例句
1.Many piezoelectric materials are not centrosymmetric crystals 中心对称晶体, which is why they can generate an electric charge under mechanical stress.
许多压电材料不是中心对称晶体,这就是它们在机械应力下能够产生电荷的原因。
2.Researchers have discovered that the centrosymmetric crystal 中心对称晶体 structure influences its thermal conductivity.
研究人员发现,中心对称晶体的结构影响其热导率。
3.The symmetry of a centrosymmetric crystal 中心对称晶体 allows for certain types of diffraction patterns in X-ray crystallography.
一个中心对称晶体的对称性允许在X射线晶体学中出现某些类型的衍射图样。
4.The study of centrosymmetric crystal 中心对称晶体 structures is essential in understanding their optical properties.
研究中心对称晶体的结构对于理解其光学特性至关重要。
5.In solid-state physics, a centrosymmetric crystal 中心对称晶体 can exhibit unique electronic characteristics.
在固态物理中,中心对称晶体可以表现出独特的电子特性。
作文
In the study of crystallography, one of the most fascinating topics is the classification of crystals based on their symmetry properties. Among these classifications, the term centrosymmetric crystal refers to a specific type of crystal that possesses a center of symmetry. This means that for any point in the crystal structure, there exists an equivalent point at an equal distance in the opposite direction from the center. The significance of this symmetry lies not only in the aesthetic appeal of the crystal but also in its physical properties and behaviors. Centrosymmetric crystals are characterized by their unique arrangement of atoms, which allows them to exhibit certain symmetrical properties. For example, in a centrosymmetric crystal, if you were to draw a line through the center of the crystal, every atom on one side would have a corresponding atom directly opposite it on the other side. This kind of symmetry can be found in various mineral structures, including quartz and calcite. The implications of having a centrosymmetric crystal structure extend beyond mere appearance. It affects how these crystals interact with light, heat, and other forms of energy. For instance, centrosymmetric crystals do not exhibit piezoelectricity, which is the ability to generate an electric charge in response to applied mechanical stress. This property is crucial in many modern technologies, such as sensors and actuators. In contrast, non-centrosymmetric crystals, like certain types of tourmaline, can produce electrical charges when subjected to pressure, making them valuable for specific applications. Moreover, the presence of a center of symmetry in a centrosymmetric crystal also influences its optical behavior. These crystals can exhibit different types of birefringence, which is the splitting of light into two distinct rays as it passes through the crystal. Understanding these optical properties is essential for various fields, including mineralogy, materials science, and even art. Artists often utilize the unique light interactions of crystals in their work, creating stunning visual effects that captivate viewers. In addition to their physical properties, centrosymmetric crystals also play a significant role in the field of solid-state physics. Researchers study these crystals to understand their electronic properties, which can lead to advancements in semiconductor technology. The symmetry of these crystals can influence the band structure, affecting how electrons move through the material and ultimately determining its conductivity. Furthermore, the study of centrosymmetric crystals contributes to our understanding of phase transitions in materials. As temperature changes, some crystals may undergo transformations that alter their symmetry. By investigating these transitions, scientists can gain insights into the fundamental principles governing material behavior, which has implications for developing new materials with tailored properties for specific applications. In conclusion, the concept of a centrosymmetric crystal encompasses a rich field of study that intersects various scientific disciplines. From their unique atomic arrangements and physical properties to their applications in technology and art, these crystals offer a window into the intricate world of symmetry in nature. As research continues to evolve, the understanding of centrosymmetric crystals will undoubtedly lead to further innovations and discoveries that enhance our lives in unexpected ways.
在晶体学的研究中,一个最迷人的主题是基于对称性特征对晶体进行分类。在这些分类中,术语中心对称晶体指的是一种特定类型的晶体,它具有对称中心。这意味着在晶体结构中的任何一点,都存在一个相应的点,距离中心相等且方向相反。这种对称性的意义不仅体现在晶体的美学吸引力上,还体现在其物理性质和行为上。
中心对称晶体的特点在于其独特的原子排列,这使得它们能够表现出某些对称特性。例如,在中心对称晶体中,如果你通过晶体的中心画一条线,那么一侧的每个原子都会在另一侧有一个直接相对的对应原子。这种对称性可以在各种矿物结构中找到,包括石英和方解石。
拥有中心对称晶体结构的影响超越了单纯的外观。它影响这些晶体与光、热和其他形式的能量的相互作用。例如,中心对称晶体不表现出压电性,即在施加机械应力时产生电荷的能力。这一特性在许多现代技术中至关重要,如传感器和执行器。相比之下,某些类型的电气石等非中心对称晶体在受到压力时可以产生电荷,使它们在特定应用中具有价值。
此外,中心对称晶体中对称中心的存在还影响其光学行为。这些晶体可以表现出不同类型的双折射现象,即光经过晶体时分裂成两条不同的光线。理解这些光学特性对于矿物学、材料科学甚至艺术等多个领域至关重要。艺术家们常常利用晶体的独特光互动效果来创作作品,创造出令人惊叹的视觉效果,吸引观众。
除了物理特性,中心对称晶体在固态物理学领域也发挥着重要作用。研究人员研究这些晶体以理解其电子特性,这可能导致半导体技术的进步。这些晶体的对称性可以影响能带结构,从而影响电子在材料中的运动,最终决定其导电性。
此外,中心对称晶体的研究有助于我们理解材料中的相变。当温度变化时,一些晶体可能会经历改变其对称性的转变。通过研究这些转变,科学家可以深入了解支配材料行为的基本原理,这对开发具有特定应用的定制材料具有重要意义。
总之,中心对称晶体的概念涵盖了一个丰富的研究领域,交叉了多个科学学科。从其独特的原子排列和物理特性到在技术和艺术中的应用,这些晶体为我们提供了一个观察自然中对称性复杂世界的窗口。随着研究的不断发展,对中心对称晶体的理解无疑将导致进一步的创新和发现,从而以意想不到的方式改善我们的生活。
相关单词