chemisorbing
简明释义
英[ˌkɛmɪˈzɔrbɪŋ]美[ˌkɛmɪˈzɔrbɪŋ]
v. 用化学方法吸收,吸附(某种物质)
英英释义
单词用法
同义词
吸附 | 化学吸附过程在催化中至关重要。 | ||
结合 | Adsorbing molecules onto a surface can enhance reaction rates. | 将分子吸附到表面可以提高反应速率。 | |
相互作用 | Binding of the substrate to the enzyme is a key step in the reaction. | 底物与酶的结合是反应中的关键步骤。 |
反义词
物理吸附 | Physisorbing is a weaker interaction compared to chemisorbing. | 物理吸附的相互作用强度低于化学吸附。 | |
解吸附 | Desorbing molecules can easily be released from the surface. | 解吸附的分子可以很容易地从表面释放。 |
例句
1.The paper reports the best condition of making Ni-S active cathode by chemisorbing S technique and the electrochemical performance of Ni-S active cathode.
研究了用化学吸附硫法制备节能镍硫活性阴极的最佳条件及该电极的电性能。
2.The paper reports the best condition of making Ni-S active cathode by chemisorbing S technique and the electrochemical performance of Ni-S active cathode.
研究了用化学吸附硫法制备节能镍硫活性阴极的最佳条件及该电极的电性能。
3.The adsorption isotherm indicates how well the surface can chemisorb various substances.
吸附等温线表明表面如何有效地化学吸附各种物质。
4.The process of chemisorbing metal ions on the surface of the catalyst is essential for enhancing its activity.
在催化剂表面化学吸附金属离子的过程对于增强其活性至关重要。
5.The efficiency of the filter depends on its ability to chemisorb pollutants from the air.
过滤器的效率取决于其从空气中化学吸附污染物的能力。
6.Researchers are studying how different materials affect the chemisorbing capacity of gases.
研究人员正在研究不同材料如何影响气体的化学吸附能力。
7.In semiconductor manufacturing, chemisorbing certain chemicals is crucial for creating thin films.
在半导体制造中,化学吸附某些化学物质对制造薄膜至关重要。
作文
In the realm of surface chemistry, the term chemisorbing refers to a specific type of adsorption process where a substance forms a strong chemical bond with a surface. This phenomenon is crucial in various applications, including catalysis, sensor technology, and material science. Understanding how chemisorbing works can provide insights into the efficiency of catalysts used in chemical reactions. For instance, when a catalyst is involved in a reaction, it often undergoes chemisorbing, which allows reactants to bind strongly to the catalyst's surface, enhancing the rate of the reaction. The process of chemisorbing differs significantly from physisorption, another form of adsorption characterized by weaker Van der Waals forces. In contrast, chemisorbing involves the formation of covalent or ionic bonds, resulting in a more stable interaction between the adsorbate and the substrate. This stability is essential for many industrial processes where durability and resistance to desorption are required. For example, in heterogeneous catalysis, metals such as platinum or palladium often function by chemisorbing reactants onto their surfaces. The strong bonds formed during this process facilitate the breaking and forming of chemical bonds, leading to the desired products. Researchers continuously investigate the mechanisms behind chemisorbing to optimize catalyst design and improve reaction efficiencies. Moreover, chemisorbing plays a vital role in the development of sensors. Many gas sensors operate on the principle of chemisorbing target gases onto sensing materials, which alters their electrical properties. This change can be measured and correlated to the concentration of the gas, allowing for sensitive detection. Understanding the dynamics of chemisorbing is therefore essential for enhancing the performance of these sensors. In material science, chemisorbing is also significant in coating technologies. For instance, when applying protective coatings to metals, the effectiveness of the coating often relies on its ability to chemisorb to the metal surface. This strong adhesion prevents corrosion and enhances the longevity of the material. Techniques such as self-assembled monolayers (SAMs) utilize chemisorbing principles to create functionalized surfaces that can modify the properties of materials at the nanoscale. In conclusion, the concept of chemisorbing is fundamental in various scientific and industrial fields. Its ability to form strong, stable bonds with surfaces makes it an invaluable process in catalysis, sensor technology, and material science. As research continues to uncover the intricacies of chemisorbing, we can expect advancements that will lead to more efficient chemical processes, improved sensing capabilities, and innovative material applications. By grasping the importance of chemisorbing, we can better appreciate its impact on modern technology and its potential for future developments.
在表面化学领域,术语chemisorbing指的是一种特定的吸附过程,其中物质与表面形成强的化学键。这一现象在催化、传感器技术和材料科学等多种应用中至关重要。理解chemisorbing的工作原理可以为催化剂在化学反应中的效率提供见解。例如,当催化剂参与反应时,它通常会经历chemisorbing,这使得反应物能够强烈地与催化剂表面结合,从而增强反应速率。chemisorbing的过程与另一种吸附形式——物理吸附(physisorption)有显著不同,后者的特征是较弱的范德瓦尔斯力。相比之下,chemisorbing涉及共价或离子键的形成,导致吸附物与基底之间的相互作用更加稳定。这种稳定性对于许多工业过程至关重要,因为这些过程需要耐久性和抗脱附性。例如,在异相催化中,铂或钯等金属通常通过chemisorbing反应物到其表面来发挥作用。在这一过程中形成的强键促进了化学键的断裂和形成,从而生成所需的产品。研究人员不断探讨chemisorbing背后的机制,以优化催化剂设计并提高反应效率。此外,chemisorbing在传感器的发展中也起着至关重要的作用。许多气体传感器基于目标气体在传感材料上chemisorbing的原理,导致其电气特性发生变化。这种变化可以被测量并与气体浓度相关联,从而实现敏感检测。因此,理解chemisorbing的动态对于提升这些传感器的性能至关重要。在材料科学中,chemisorbing在涂层技术中同样重要。例如,在金属上施加保护涂层时,涂层的有效性往往依赖于其能够与金属表面进行chemisorbing。这种强附着力可以防止腐蚀并增强材料的耐用性。自组装单分子层(SAMs)等技术利用chemisorbing原理来创建功能化表面,从而在纳米尺度上修改材料的性质。总之,chemisorbing的概念在多个科学和工业领域都是基础性的。它与表面形成强稳定键的能力使其成为催化、传感器技术和材料科学中不可或缺的过程。随着研究不断揭示chemisorbing的复杂性,我们可以期待将带来更高效的化学过程、更好的传感能力以及创新的材料应用。通过掌握chemisorbing的重要性,我们可以更好地欣赏它对现代技术的影响及其未来发展的潜力。