antisymmetric state

简明释义

反对称态;

英英释义

An antisymmetric state refers to a quantum state of a system of identical particles where the wave function changes sign when two particles are exchanged, indicating that the particles are fermions and obey the Pauli exclusion principle.

反对称态是指一组相同粒子的量子态,其中当两个粒子交换位置时,波函数的符号会改变,这表明这些粒子是费米子,并遵循泡利不相容原理。

例句

1.The system's wave function must be in an antisymmetric state 反对称态 to comply with the Pauli exclusion principle.

系统的波函数必须处于反对称态 antisymmetric state,以遵循泡利不相容原理。

2.Two fermions cannot occupy the same quantum state, which leads them to be in an antisymmetric state 反对称态.

两个费米子不能占据相同的量子态,这使得它们处于反对称态 antisymmetric state

3.When analyzing the spin of two electrons, we find that they can only exist in an antisymmetric state 反对称态 if they have opposite spins.

当分析两个电子的自旋时,我们发现它们只有在自旋相反时才能存在于反对称态 antisymmetric state

4.In quantum mechanics, particles can exist in an antisymmetric state 反对称态 when they are indistinguishable.

在量子力学中,当粒子不可区分时,它们可以处于反对称态 antisymmetric state

5.In a two-particle system, the overall wave function must be an antisymmetric state 反对称态 for identical fermions.

在一个双粒子系统中,对于相同的费米子,整体波函数必须是反对称态 antisymmetric state

作文

In the realm of quantum mechanics, the concept of an antisymmetric state plays a crucial role in understanding the behavior of fermions. Fermions are particles that follow the Pauli exclusion principle, which states that no two identical fermions can occupy the same quantum state simultaneously. This principle leads to the formation of an antisymmetric state, which is a mathematical representation of the wave function for a system of identical fermions. When two fermions are exchanged, the wave function changes sign, resulting in an antisymmetric state. This property is essential for explaining various physical phenomena, such as the stability of matter and the structure of atoms.The antisymmetric state can be illustrated through the example of electrons in an atom. Electrons are fermions, and when they occupy orbitals around a nucleus, their combined wave function must be antisymmetric. If we consider two electrons in an atom, their overall wave function can be expressed as a product of a spatial part and a spin part. The spatial part describes the probability distribution of the electrons, while the spin part accounts for their intrinsic angular momentum. To satisfy the antisymmetry requirement, if one electron has a certain spin state, the other must have the opposite spin state. This results in a configuration that obeys the Pauli exclusion principle, ensuring that the electrons do not occupy the same quantum state.Furthermore, the implications of antisymmetric states extend beyond individual atoms to the behavior of larger systems, such as superconductors and atomic nuclei. In superconductors, pairs of electrons known as Cooper pairs form an antisymmetric state that allows for the flow of electric current without resistance. This phenomenon is a direct consequence of the underlying quantum mechanics governing the behavior of fermions. Similarly, in atomic nuclei, the arrangement of protons and neutrons must also adhere to the principles of antisymmetric states, influencing nuclear stability and reactions.Understanding antisymmetric states is not only vital for theoretical physics but also has practical applications in technology. For instance, the principles derived from the study of fermions and antisymmetric states are foundational in the development of quantum computing. Quantum bits, or qubits, leverage the properties of quantum mechanics, including antisymmetric states, to perform computations at speeds unattainable by classical computers. This emerging field holds promise for solving complex problems across various domains, from cryptography to material science.In conclusion, the concept of an antisymmetric state is fundamental in quantum mechanics, particularly in the study of fermions. It encapsulates the essence of the Pauli exclusion principle and governs the behavior of particles in various systems. From the structure of atoms to the functionality of superconductors and the advancements in quantum computing, antisymmetric states are integral to our understanding of the physical world. As research in quantum mechanics continues to evolve, the significance of antisymmetric states will undoubtedly play a pivotal role in shaping future discoveries and technologies.

在量子力学领域,反对称态的概念在理解费米子的行为中起着关键作用。费米子是遵循泡利不相容原理的粒子,该原理指出,两个相同的费米子不能同时占据相同的量子态。这一原则导致了反对称态的形成,这是一种用于描述相同费米子系统的波函数的数学表示。当两个费米子被交换时,波函数的符号发生变化,从而产生反对称态。这一特性对于解释各种物理现象至关重要,例如物质的稳定性和原子的结构。可以通过原子中的电子示例来说明反对称态。电子是费米子,当它们在原子核周围占据轨道时,它们的组合波函数必须是反对称的。如果我们考虑两个电子在原子中,它们的总体波函数可以表示为空间部分和自旋部分的乘积。空间部分描述了电子的概率分布,而自旋部分则考虑了它们的内在角动量。为了满足反对称性要求,如果一个电子具有某种自旋态,另一个电子必须具有相反的自旋态。这导致了一种遵循泡利不相容原理的配置,确保电子不占据相同的量子态。此外,反对称态的影响超越了单个原子,扩展到更大系统的行为,例如超导体和原子核。在超导体中,被称为库珀对的电子对形成了一种反对称态,使电流能够无阻力地流动。这一现象是决定费米子行为的基础量子力学的直接结果。同样,在原子核中,质子和中子的排列也必须遵循反对称态的原则,影响核的稳定性和反应。理解反对称态不仅对理论物理至关重要,还有实际应用于技术。例如,源于费米子和反对称态研究的原理是量子计算发展的基础。量子比特或量子位利用量子力学的性质,包括反对称态,以在经典计算机无法达到的速度进行计算。这个新兴领域在各个领域解决复杂问题的潜力巨大,从密码学到材料科学。总之,反对称态的概念在量子力学中是基本的,特别是在费米子的研究中。它概括了泡利不相容原理的本质,并支配着各种系统中粒子的行为。从原子的结构到超导体的功能以及量子计算的发展,反对称态是我们理解物理世界的核心。随着量子力学研究的不断发展,反对称态的重要性无疑将在塑造未来发现和技术中发挥关键作用。

相关单词

antisymmetric

antisymmetric详解:怎么读、什么意思、用法