antibonding molecular orbital
简明释义
反键分子轨道;
英英释义
例句
1.The energy level of an antibonding molecular orbital (反键分子轨道) is higher than that of its bonding counterpart.
一个反键分子轨道的能量水平高于其对应的键合轨道。
2.Understanding antibonding molecular orbitals (反键分子轨道) is crucial for predicting the properties of complex molecules.
理解反键分子轨道对于预测复杂分子的性质至关重要。
3.When filling molecular orbitals, electrons first occupy bonding orbitals before they fill any antibonding molecular orbital (反键分子轨道).
在填充分子轨道时,电子首先占据键合轨道,然后才会填充任何反键分子轨道。
4.In a diatomic molecule, the presence of an antibonding molecular orbital (反键分子轨道) can weaken the bond between the two atoms.
在一个双原子分子中,存在的反键分子轨道可以削弱两个原子之间的键合。
5.Electrons in an antibonding molecular orbital (反键分子轨道) contribute to the instability of the molecule.
位于反键分子轨道中的电子会导致分子的稳定性下降。
作文
In the study of molecular chemistry, understanding the concept of antibonding molecular orbital is crucial for comprehending how atoms interact to form molecules. Atoms are the building blocks of matter, and when they come together, they can form chemical bonds. These bonds can be categorized into two main types: bonding and antibonding. The bonding molecular orbitals are formed when atomic orbitals combine in a way that allows electrons to be shared between atoms, leading to a stable configuration. In contrast, antibonding molecular orbital refers to a type of molecular orbital that is formed when atomic orbitals combine in such a way that they interfere destructively. This interference results in an increase in energy and a decrease in stability for the molecule. To illustrate this concept, consider two hydrogen atoms approaching each other. When their 1s atomic orbitals overlap, they can either combine to form a bonding molecular orbital, which lowers the energy of the system, or they can create an antibonding molecular orbital, which raises the energy level. The presence of an antibonding molecular orbital means that if electrons occupy this orbital, they will contribute to the instability of the molecule rather than its stability. Thus, the existence of antibonding orbitals is critical in determining the overall bond order and stability of a molecule.The occupancy of molecular orbitals follows the Pauli exclusion principle and Hund's rule. For a diatomic molecule, if there are more electrons present than what can fill the bonding orbitals, the excess electrons will occupy the antibonding molecular orbital. This leads to a situation where the bond order, which is calculated as the difference between the number of electrons in bonding and antibonding orbitals, becomes less than one, indicating a weaker bond or even no bond at all.In practical terms, this understanding has significant implications in fields such as material science, biochemistry, and pharmacology. For example, the stability of a molecule can influence its reactivity; molecules with filled bonding orbitals and empty antibonding molecular orbitals tend to be more stable and less reactive. Conversely, if a molecule has occupied antibonding molecular orbitals, it may be more prone to undergo chemical reactions due to its inherent instability.Moreover, the concept of antibonding molecular orbital extends beyond simple diatomic molecules. In more complex molecules, the interplay between bonding and antibonding orbitals can lead to a rich variety of electronic properties. Understanding these interactions allows chemists to predict the behavior of molecules under different conditions, aiding in the design of new materials and drugs.In conclusion, the concept of antibonding molecular orbital is fundamental in molecular chemistry. It helps explain why certain molecules are stable while others are not, and it plays a significant role in determining the chemical properties of substances. By grasping the implications of antibonding molecular orbitals, students and professionals in the field can enhance their understanding of molecular interactions and the principles governing chemical reactions.
在分子化学的研究中,理解反键分子轨道的概念对于理解原子如何相互作用形成分子至关重要。原子是物质的基本构件,当它们结合在一起时,可以形成化学键。这些键可以分为两种主要类型:键合和反键合。键合分子轨道是当原子轨道以允许电子在原子之间共享的方式结合时形成的,从而导致稳定的构型。相反,反键分子轨道指的是一种分子轨道,它是在原子轨道以破坏性方式结合时形成的。这种干扰导致能量增加,分子的稳定性降低。为了说明这一概念,考虑两个氢原子相互靠近。当它们的1s原子轨道重叠时,它们可以结合形成一个键合分子轨道,这会降低系统的能量,或者它们可以创建一个反键分子轨道,这会提高能量水平。反键分子轨道的存在意味着如果电子占据这个轨道,它们将对分子的稳定性产生不利影响。因此,抗键轨道的存在对于确定分子的整体键级和稳定性至关重要。分子轨道的占用遵循泡利不相容原理和洪特规则。对于一个双原子分子,如果存在的电子数量超过了可以填充键合轨道的数量,剩余的电子将占据反键分子轨道。这导致键级的情况,其中计算为键合和反键合轨道中电子数量的差异,变得小于1,表明键变弱甚至没有键。在实际应用中,这种理解在材料科学、生物化学和药理学等领域具有重要意义。例如,分子的稳定性可以影响其反应性;具有填满的键合轨道和空的反键分子轨道的分子往往更稳定且反应性较低。相反,如果一个分子具有占据的反键分子轨道,由于其固有的不稳定性,它可能更容易发生化学反应。此外,反键分子轨道的概念不仅限于简单的双原子分子。在更复杂的分子中,键合和反键合轨道之间的相互作用可以导致丰富多样的电子特性。理解这些相互作用使化学家能够预测分子在不同条件下的行为,从而有助于新材料和药物的设计。总之,反键分子轨道的概念在分子化学中是基础性的。它帮助解释为什么某些分子是稳定的,而其他分子则不是,并且在确定物质的化学性质方面发挥着重要作用。通过掌握反键分子轨道的含义,学生和专业人士可以增强对分子相互作用及化学反应规律的理解。
相关单词