anisotropic induction log

简明释义

1. 各向异性感应测井; 2. 各向异性感应测井图;

英英释义

An anisotropic induction log is a type of geophysical log that measures the electrical resistivity of rock formations, taking into account the directional dependence of resistivity due to the anisotropic properties of the materials.

各向异性感应测井是一种地球物理测井,测量岩石层的电阻率,考虑到由于材料的各向异性特性而导致的电阻率的方向依赖性。

例句

1.The analysis of the anisotropic induction log revealed significant variations in the subsurface formations.

各向异性感应测井的分析揭示了地下地层的显著变化。

2.By utilizing the anisotropic induction log, geologists can better understand the directional properties of the rock.

通过利用各向异性感应测井,地质学家可以更好地理解岩石的方向特性。

3.Using the anisotropic induction log, we identified zones with different permeability characteristics.

使用各向异性感应测井,我们识别出具有不同渗透特性的区域。

4.The anisotropic induction log results were crucial for optimizing the drilling strategy.

各向异性感应测井的结果对于优化钻探策略至关重要。

5.The anisotropic induction log provided insights into the fluid movement within the reservoir.

各向异性感应测井提供了关于储层内流体运动的见解。

作文

In the field of geophysics and petrophysics, understanding the subsurface properties of geological formations is crucial for effective resource exploration and extraction. One of the key tools used in this analysis is the anisotropic induction log, which provides valuable insights into the electrical conductivity of rocks. This technique is particularly important when dealing with formations that exhibit anisotropic behavior, meaning that their physical properties vary depending on the direction of measurement. The anisotropic induction log utilizes electromagnetic induction to measure the resistivity of the rock formations. Unlike conventional induction logs, which assume isotropic conditions, this advanced logging technique considers the directional dependence of resistivity. This is essential in formations where the rock's texture, porosity, and fluid content can lead to significant variations in conductivity based on the angle of measurement. By employing the anisotropic induction log, geologists and engineers can obtain a more accurate representation of the subsurface environment. For instance, in shale formations, the presence of aligned clay minerals can create anisotropic conditions that traditional logging methods might overlook. The ability to distinguish between different orientations allows for better modeling of fluid flow and reservoir behavior. Moreover, the data obtained from the anisotropic induction log can be integrated with other logging techniques, such as sonic and density logs, to enhance the overall understanding of the geological formation. This multi-faceted approach enables the identification of sweet spots for hydrocarbon production and aids in making informed decisions regarding drilling and extraction strategies. In addition to its applications in hydrocarbon exploration, the anisotropic induction log has also proven useful in environmental studies and geothermal energy assessments. By understanding the anisotropic properties of subsurface materials, scientists can better predict how contaminants might migrate through different geological layers or assess the viability of geothermal reservoirs. The interpretation of anisotropic induction log data requires a solid understanding of both the geological context and the principles of electromagnetism. Analysts must consider factors such as the frequency of the induced electromagnetic fields, the geometry of the logging tool, and the characteristics of the surrounding rock. Advanced modeling software is often employed to simulate different scenarios and refine the accuracy of the results. In conclusion, the anisotropic induction log represents a significant advancement in subsurface characterization techniques. Its ability to account for directional variations in resistivity offers a more nuanced understanding of geological formations, ultimately leading to more efficient resource management and environmental protection. As technology continues to evolve, the integration of anisotropic induction log data with other geophysical methods will undoubtedly enhance our capabilities in exploring and managing the Earth's resources effectively.

在地球物理学和岩石物理学领域,理解地质构造的地下特性对于有效的资源勘探和开采至关重要。用于这一分析的关键工具之一是各向异性电感测井,它提供了有关岩石电导率的宝贵见解。这项技术在处理表现出各向异性行为的构造时尤为重要,这意味着它们的物理特性会根据测量方向而变化。 各向异性电感测井利用电磁感应来测量岩石构造的电阻率。与假设各向同性条件的传统电感测井不同,这种先进的测井技术考虑了电阻率的方向依赖性。这在岩石的纹理、孔隙度和流体含量可能导致基于测量角度的电导率显著变化的构造中至关重要。 通过使用各向异性电感测井,地质学家和工程师可以获得对地下环境的更准确表示。例如,在页岩构造中,排列的粘土矿物的存在可能会造成传统测井方法可能忽视的各向异性条件。区分不同方向的能力使得对流体流动和储层行为的建模更加准确。 此外,从各向异性电感测井获得的数据可以与其他测井技术(如声波测井和密度测井)结合,以增强对地质构造的整体理解。这种多方面的方法能够识别出油气生产的优质区域,并有助于做出关于钻井和开采策略的明智决策。 除了在油气勘探中的应用外,各向异性电感测井在环境研究和地热能评估中也证明了其价值。通过理解地下材料的各向异性特性,科学家可以更好地预测污染物如何在不同的地质层中迁移或评估地热储层的可行性。 对各向异性电感测井数据的解释需要对地质背景和电磁学原理有扎实的理解。分析人员必须考虑诱导电磁场的频率、测井工具的几何形状以及周围岩石的特征等因素。通常使用先进的建模软件来模拟不同的情景并提高结果的准确性。 总之,各向异性电感测井代表了地下特征表征技术的重要进步。其考虑电阻率的方向变化的能力提供了对地质构造的更细致理解,最终导致更高效的资源管理和环境保护。随着技术的不断发展,各向异性电感测井数据与其他地球物理方法的结合无疑将增强我们有效探索和管理地球资源的能力。

相关单词

anisotropic

anisotropic详解:怎么读、什么意思、用法

induction

induction详解:怎么读、什么意思、用法