anisotropic absorption

简明释义

非均质吸收;

英英释义

Anisotropic absorption refers to the phenomenon where the absorption of light or other electromagnetic radiation varies depending on the direction of the incoming wave relative to the material.

各向异性吸收是指光或其他电磁辐射的吸收现象在不同的入射波方向下相对于材料的变化。

例句

1.Researchers are investigating the anisotropic absorption properties of graphene for sensor applications.

研究人员正在调查石墨烯在传感器应用中的各向异性吸收特性。

2.In photonics, understanding anisotropic absorption can lead to more efficient light management.

在光子学中,理解各向异性吸收可以实现更高效的光管理。

3.The study of anisotropic absorption in materials is crucial for developing better optical devices.

材料中各向异性吸收的研究对开发更好的光学设备至关重要。

4.The anisotropic absorption of light in crystals can affect their color and appearance.

晶体中光的各向异性吸收会影响其颜色和外观。

5.Understanding anisotropic absorption is essential for improving the performance of photovoltaic cells.

理解各向异性吸收对提高光伏电池的性能至关重要。

作文

In the field of physics and materials science, the term anisotropic absorption refers to the directional dependence of a material's ability to absorb energy, such as light or sound. This phenomenon is crucial in understanding how different materials interact with various forms of energy. Unlike isotropic materials, which exhibit uniform properties in all directions, anisotropic materials have varying characteristics based on the direction of the incoming energy. The implications of anisotropic absorption are significant in numerous applications, including optics, acoustics, and even in the development of advanced materials for technology and engineering.To illustrate the concept, consider the example of a crystal. Many crystals possess a unique internal structure that leads to anisotropic absorption. For instance, when light passes through a crystal, it may be absorbed more effectively in one direction compared to another. This can result in interesting optical effects, such as birefringence, where the light is split into two rays that travel at different speeds depending on their polarization and the direction of propagation. Understanding anisotropic absorption in crystals is essential for designing optical devices like polarizers and wave plates, which rely on controlling light behavior.In acoustics, anisotropic absorption can also play a critical role. Materials used in soundproofing or acoustic treatment often need to absorb sound waves effectively. If a material has anisotropic properties, its ability to absorb sound will vary with the angle of incidence of the sound waves. This means that the design of spaces intended for music production or broadcasting must take into account the anisotropic absorption characteristics of the materials used. By strategically placing sound-absorbing panels that exploit these properties, one can enhance the acoustic quality of a room significantly.Moreover, the concept of anisotropic absorption extends beyond natural materials to engineered substances. In modern technology, researchers are developing metamaterials—materials engineered to have properties not found in naturally occurring materials. These metamaterials can be designed to exhibit specific anisotropic absorption characteristics, allowing for innovative applications such as cloaking devices, improved solar cells, and enhanced sensors. By manipulating the absorption properties at a microscopic level, scientists can create materials that behave in ways previously thought impossible.In conclusion, anisotropic absorption is a fundamental property that influences how materials interact with energy in various forms. Its significance spans multiple disciplines, from physics and engineering to practical applications in everyday technology. Understanding this concept allows scientists and engineers to innovate and improve materials for a wide range of uses, highlighting the importance of directional dependence in the absorption of energy. As research continues to advance, the potential applications of anisotropic absorption will undoubtedly expand, leading to new discoveries and technologies that can transform our interaction with the physical world.

在物理学和材料科学领域,术语各向异性吸收指的是材料吸收能量(如光或声)的能力在不同方向上的依赖性。这种现象对于理解不同材料如何与各种形式的能量相互作用至关重要。与在所有方向上表现出均匀特性的各向同性材料不同,各向异性材料的特性会根据入射能量的方向而变化。各向异性吸收的影响在许多应用中都具有重要意义,包括光学、声学,甚至在先进材料的技术和工程开发中。为了说明这一概念,可以考虑晶体的例子。许多晶体具有独特的内部结构,导致各向异性吸收。例如,当光通过晶体时,它可能在一个方向上比另一个方向更有效地被吸收。这可能导致有趣的光学效应,如双折射,其中光被分成两条光线,这些光线根据其极化和传播方向以不同的速度传播。理解晶体中的各向异性吸收对设计依赖于控制光行为的光学设备(如偏振器和波片)至关重要。在声学中,各向异性吸收也可以发挥关键作用。用于隔音或声学处理的材料通常需要有效地吸收声波。如果材料具有各向异性特性,其吸收声的能力将随着声波入射角的变化而变化。这意味着,旨在进行音乐制作或广播的空间设计必须考虑所用材料的各向异性吸收特性。通过战略性地放置利用这些特性的声吸收面板,可以显著改善房间的声学质量。此外,各向异性吸收的概念不仅限于自然材料,还扩展到工程材料。在现代技术中,研究人员正在开发超材料——这种材料经过工程设计,具有自然材料中不存在的特性。这些超材料可以设计成表现出特定的各向异性吸收特性,从而允许创新应用,如隐形设备、改进的太阳能电池和增强的传感器。通过在微观层面操纵吸收特性,科学家可以创造出以前认为不可能的材料。总之,各向异性吸收是一种基本特性,影响着材料与各种形式的能量相互作用的方式。它的重要性跨越多个学科,从物理学和工程学到日常技术中的实际应用。理解这一概念使科学家和工程师能够创新和改善各种用途的材料,突显了能量吸收中的方向依赖性的重要性。随着研究的不断推进,各向异性吸收的潜在应用无疑将扩展,带来新的发现和技术,改变我们与物理世界的互动。

相关单词

anisotropic

anisotropic详解:怎么读、什么意思、用法

absorption

absorption详解:怎么读、什么意思、用法