analytic nadir-point triangulation

简明释义

解析天底点辐射三角测量;

英英释义

Analytic nadir-point triangulation is a mathematical and computational technique used in geospatial analysis to determine the lowest point (nadir) within a triangular area formed by three points in a given space, often utilized in fields such as cartography, geography, and remote sensing.

解析性最低点三角测量是一种数学和计算技术,用于地理空间分析,以确定在给定空间中由三个点形成的三角形区域内的最低点(nadir),通常用于制图、地理和遥感等领域。

例句

1.In robotics, analytic nadir-point triangulation is crucial for navigating complex environments.

在机器人技术中,分析性最低点三角测量对于在复杂环境中导航至关重要。

2.In urban planning, analytic nadir-point triangulation helps in determining optimal locations for new facilities.

在城市规划中,分析性最低点三角测量有助于确定新设施的最佳位置。

3.Using analytic nadir-point triangulation, the geologists were able to map the subsurface features with remarkable precision.

利用分析性最低点三角测量,地质学家能够以惊人的精度绘制地下特征图。

4.The research team utilized analytic nadir-point triangulation to enhance the accuracy of their spatial data analysis.

研究小组利用分析性最低点三角测量来提高他们空间数据分析的准确性。

5.The environmental study employed analytic nadir-point triangulation to assess the impact of pollution in various regions.

这项环境研究采用分析性最低点三角测量来评估污染对各个地区的影响。

作文

In the realm of data analysis and geographical information systems (GIS), the term analytic nadir-point triangulation plays a crucial role in understanding spatial relationships and enhancing data accuracy. This technique involves the use of triangulation methods to determine the nadir point, which is the lowest point of an object or surface when viewed from above. By applying analytic nadir-point triangulation, analysts can effectively map out areas of interest and create detailed representations of geographical features.The process begins with the collection of data points that represent various locations in a given area. These data points can be obtained through satellite imagery, aerial photography, or ground surveys. Once the data is gathered, the next step is to identify the nadir points for each location. The nadir point is significant because it provides a reference for the vertical position of the data points relative to the Earth’s surface.After determining the nadir points, analysts employ triangulation techniques to establish connections between these points. Triangulation is a method that uses the geometry of triangles to derive unknown distances or positions based on known points. In the context of analytic nadir-point triangulation, this means creating triangles between the nadir points and other reference points in the dataset.One of the primary advantages of using analytic nadir-point triangulation is its ability to improve the accuracy of spatial data. Traditional methods of mapping can often lead to discrepancies due to factors like terrain variations or atmospheric conditions. However, by focusing on the nadir points and employing triangulation, analysts can minimize these errors and produce more reliable maps.Furthermore, the applications of analytic nadir-point triangulation extend beyond just mapping. It can be utilized in various fields such as urban planning, environmental monitoring, and disaster management. For instance, urban planners can use this technique to identify optimal locations for new infrastructure projects by analyzing the spatial relationships between different land uses. In environmental studies, researchers can monitor changes in land cover and assess the impact of human activities on natural resources by employing accurate spatial data derived from triangulation methods.In addition to practical applications, analytic nadir-point triangulation also contributes to theoretical advancements in spatial analysis. Researchers continuously explore new algorithms and techniques to enhance the efficiency and effectiveness of triangulation methods. This ongoing research not only improves existing practices but also opens up new avenues for understanding complex spatial phenomena.In conclusion, analytic nadir-point triangulation is a vital technique in the field of data analysis and GIS. Its ability to accurately determine spatial relationships and enhance data precision makes it an invaluable tool for various applications. As technology continues to evolve, the methods associated with analytic nadir-point triangulation will likely become even more sophisticated, further advancing our understanding of the world around us and improving decision-making processes in numerous sectors.

在数据分析和地理信息系统(GIS)的领域中,术语解析天底点三角测量在理解空间关系和提高数据准确性方面发挥着至关重要的作用。这种技术涉及使用三角测量方法来确定天底点,即从上方观察时物体或表面的最低点。通过应用解析天底点三角测量,分析师可以有效地绘制出感兴趣区域,并创建地理特征的详细表示。该过程始于收集代表给定区域中各种位置的数据点。这些数据点可以通过卫星图像、航空摄影或地面调查获得。一旦数据收集完成,下一步是确定每个位置的天底点。天底点的重要性在于它为数据点相对于地球表面的垂直位置提供了参考。在确定天底点后,分析师采用三角测量技术在这些点之间建立连接。三角测量是一种利用三角形的几何特性,根据已知点推导未知距离或位置的方法。在解析天底点三角测量的背景下,这意味着在天底点与数据集中其他参考点之间创建三角形。使用解析天底点三角测量的主要优点之一是能够提高空间数据的准确性。传统的制图方法常常由于地形变化或大气条件等因素导致差异。然而,通过关注天底点并采用三角测量,分析师可以最小化这些误差,生成更可靠的地图。此外,解析天底点三角测量的应用不仅限于制图。它可以用于城市规划、环境监测和灾害管理等多个领域。例如,城市规划者可以利用这一技术通过分析不同土地利用之间的空间关系来确定新基础设施项目的最佳位置。在环境研究中,研究人员可以通过利用从三角测量方法获得的准确空间数据来监测土地覆盖变化,并评估人类活动对自然资源的影响。除了实际应用外,解析天底点三角测量还促进了空间分析理论的进步。研究人员不断探索新的算法和技术,以提高三角测量方法的效率和有效性。这项持续的研究不仅改善了现有实践,还为理解复杂的空间现象开辟了新的途径。总之,解析天底点三角测量是数据分析和GIS领域中的一项重要技术。它准确确定空间关系和提高数据精度的能力使其成为各种应用中不可或缺的工具。随着技术的不断发展,与解析天底点三角测量相关的方法可能会变得更加复杂,进一步推动我们对周围世界的理解,并改善各个行业的决策过程。

相关单词

analytic

analytic详解:怎么读、什么意思、用法

triangulation

triangulation详解:怎么读、什么意思、用法