alternating current induced polarization
简明释义
1. 交流激发极化法; 2. 频率域激发极化法;
英英释义
例句
1.In geophysical surveys, alternating current induced polarization 交流电感应极化 helps to identify mineral deposits.
在地球物理勘测中,交流电感应极化 交流电感应极化有助于识别矿藏。
2.Researchers measured the effects of alternating current induced polarization 交流电感应极化 on soil conductivity.
研究人员测量了交流电感应极化 交流电感应极化对土壤电导率的影响。
3.The application of alternating current induced polarization 交流电感应极化 can enhance the resolution of subsurface imaging techniques.
应用交流电感应极化 交流电感应极化可以提高地下成像技术的分辨率。
4.The study of alternating current induced polarization 交流电感应极化 is crucial for understanding subsurface geological formations.
对交流电感应极化 交流电感应极化的研究对于理解地下地质结构至关重要。
5.Understanding alternating current induced polarization 交流电感应极化 is essential for improving oil exploration methods.
理解交流电感应极化 交流电感应极化对改善石油勘探方法至关重要。
作文
In the field of geophysics, understanding the properties of subsurface materials is crucial for various applications, including mineral exploration, groundwater assessment, and environmental studies. One important phenomenon that plays a significant role in this context is alternating current induced polarization, which can provide valuable insights into the electrical characteristics of geological formations. 交变电流诱导极化是指在交变电流的作用下,材料内部出现的极化现象。这种现象主要发生在具有电导率和介电常数的物质中,尤其是在多孔介质和含水土壤中。 The principle behind alternating current induced polarization lies in the way alternating current (AC) interacts with the charge carriers within a material. When AC is applied to a sample, it causes the movement of ions and electrons, leading to the accumulation of charges at the interfaces of different materials or within the pores of a medium. This charge accumulation creates a temporary dipole moment, which can be measured and analyzed to infer information about the material's composition and structure. One of the key advantages of using alternating current induced polarization in geophysical surveys is its ability to differentiate between various types of subsurface materials. For instance, conductive minerals like sulfides exhibit distinct polarization responses compared to non-conductive materials such as silicates. By analyzing the phase shift and amplitude of the induced polarization signal, geophysicists can identify the presence of specific minerals and assess their distribution within the surveyed area. Moreover, alternating current induced polarization is particularly useful in environmental studies, where it can help detect contaminants in soil and groundwater. Contaminants often alter the electrical properties of the surrounding medium, leading to measurable changes in the induced polarization response. By employing this technique, researchers can map the extent of contamination and evaluate the effectiveness of remediation efforts. In addition to its applications in mineral exploration and environmental monitoring, alternating current induced polarization is also utilized in engineering geology. It helps assess the stability of slopes, foundations, and other structures by providing information about the moisture content and density of the subsurface materials. Understanding these parameters is essential for predicting potential geohazards and ensuring the safety of construction projects. Despite its numerous advantages, the application of alternating current induced polarization does come with challenges. One major limitation is the influence of external factors, such as temperature and frequency, on the polarization response. Therefore, careful calibration and data interpretation are essential to obtain accurate results. Additionally, the method requires a thorough understanding of the geological context to effectively correlate the induced polarization data with the physical properties of the subsurface materials. In conclusion, alternating current induced polarization is a powerful tool in geophysics that enhances our understanding of subsurface materials. Its ability to provide detailed information about the electrical properties of geological formations makes it invaluable for mineral exploration, environmental monitoring, and engineering geology. As technology advances and our understanding of this phenomenon deepens, the applications of alternating current induced polarization will continue to expand, offering new insights into the complex interactions within the Earth's subsurface.
在地球物理学领域,理解地下材料的性质对矿产勘探、地下水评估和环境研究等各种应用至关重要。在这个背景下,一个重要的现象是交变电流诱导极化,它可以为地质构造的电特性提供有价值的见解。交变电流诱导极化是指在交变电流的作用下,材料内部出现的极化现象。这种现象主要发生在具有电导率和介电常数的物质中,尤其是在多孔介质和含水土壤中。交变电流诱导极化的原理在于交变电流(AC)与材料内部的电荷载体相互作用的方式。当将交流电施加到样品上时,它会导致离子和电子的运动,从而在不同材料的界面或介质的孔隙内积累电荷。这种电荷的积累产生了一个临时的偶极矩,可以通过测量和分析来推断材料的成分和结构的信息。使用交变电流诱导极化进行地球物理勘测的一个主要优点是它能够区分不同类型的地下材料。例如,像硫化物这样的导电矿物与非导电材料(如硅酸盐)表现出明显不同的极化响应。通过分析诱导极化信号的相位偏移和幅度,地球物理学家可以识别特定矿物的存在并评估其在勘测区域内的分布。此外,交变电流诱导极化在环境研究中尤其有用,它可以帮助检测土壤和地下水中的污染物。污染物通常会改变周围介质的电特性,从而导致诱导极化响应的可测量变化。通过采用这一技术,研究人员可以绘制污染的范围并评估修复工作的有效性。除了在矿产勘探和环境监测中的应用外,交变电流诱导极化还被用于工程地质。它有助于评估坡度、基础和其他结构的稳定性,通过提供关于地下材料的含水量和密度的信息。理解这些参数对预测潜在的地质灾害和确保建设项目的安全至关重要。尽管有许多优点,但交变电流诱导极化的应用也面临挑战。一个主要的限制是温度和频率等外部因素对极化响应的影响。因此,仔细的校准和数据解释对于获得准确的结果至关重要。此外,该方法需要对地质背景有透彻的理解,以有效地将诱导极化数据与地下材料的物理特性相关联。总之,交变电流诱导极化是地球物理学中的一种强大工具,增强了我们对地下材料的理解。它能够提供关于地质构造电特性的详细信息,使其在矿产勘探、环境监测和工程地质中不可或缺。随着技术的进步和我们对这一现象的理解加深,交变电流诱导极化的应用将继续扩展,为我们提供对地球地下复杂相互作用的新见解。
相关单词