absolute variability

简明释义

1. 绝对变率; 2. 绝对可变度; 3. 绝对变异性;

英英释义

Absolute variability refers to the total amount of variation or dispersion in a set of data, measured without regard to any relative or comparative factors.

绝对变异性指的是一组数据中变化或离散的总量,测量时不考虑任何相对或比较因素。

例句

1.The absolute variability 绝对变异性 in test scores can indicate inconsistencies in the educational system.

考试成绩中的绝对变异性 absolute variability可能表明教育系统的不一致性。

2.Understanding the absolute variability 绝对变异性 in population growth rates can help policymakers make informed decisions.

理解人口增长率的绝对变异性 absolute variability可以帮助政策制定者做出明智的决定。

3.The study measured the absolute variability 绝对变异性 of temperature readings across different cities to assess climate change.

这项研究测量了不同城市温度读数的绝对变异性 absolute variability,以评估气候变化。

4.In finance, analysts often look at the absolute variability 绝对变异性 of stock prices to understand market risk.

在金融领域,分析师通常关注股票价格的绝对变异性 absolute variability 以了解市场风险。

5.Researchers calculated the absolute variability 绝对变异性 of rainfall data to predict future water supply.

研究人员计算了降雨数据的绝对变异性 absolute variability以预测未来的水供应。

作文

In the realm of statistics and data analysis, the concept of absolute variability is pivotal for understanding the dispersion of a dataset. Absolute variability refers to the total variation or spread of data points in a given set without considering the direction of the deviations from the mean. This means that it measures how much the values differ from each other in an absolute sense, providing a clear picture of the extent of variability present in the data. To illustrate the importance of absolute variability, consider a scenario where you are analyzing the test scores of two different classes. Class A has scores of 70, 75, 80, and 85, while Class B has scores of 60, 80, 80, and 100. If we calculate the average score for both classes, we find that Class A has an average of 77.5 and Class B has an average of 80. However, if we only look at the averages, we might conclude that Class B performed better overall. This is where absolute variability comes into play. When we calculate the absolute variability for both classes, we can see a different story. For Class A, the scores are closely clustered around the average, indicating low variability. In contrast, Class B's scores show a wider range, indicating higher absolute variability. This disparity highlights that even though Class B has a higher average score, the consistency of performance is lower compared to Class A. Understanding absolute variability is essential for making informed decisions based on data. It allows analysts and researchers to gauge not just the average performance but also how reliable that average is. For example, in fields like finance, knowing the absolute variability of investment returns can help investors understand the risks associated with different assets. Higher variability might indicate a riskier investment, while lower variability could suggest more stable returns. Moreover, absolute variability plays a crucial role in quality control processes in manufacturing. Companies often monitor the variability of product dimensions to ensure they meet specified standards. If a production line shows high absolute variability in product sizes, it may indicate problems in the manufacturing process that need to be addressed. In conclusion, the concept of absolute variability is fundamental in various fields, including education, finance, and manufacturing. It provides insights into the consistency and reliability of data, enabling better decision-making. By understanding and applying the principles of absolute variability, individuals and organizations can enhance their analytical capabilities and improve outcomes based on the data they collect. Thus, mastering the notion of absolute variability is crucial for anyone involved in data analysis or interpretation, as it unlocks a deeper understanding of the information at hand.

在统计学和数据分析领域,绝对变异性的概念对于理解数据集的离散性至关重要。绝对变异性指的是在不考虑偏离均值方向的情况下,给定数据集中的总变化或分布。这意味着它测量了数值在绝对意义上彼此之间的差异程度,提供了对数据中存在的变异程度的清晰图像。为了说明绝对变异性的重要性,考虑一个分析两个不同班级测试成绩的场景。班级A的分数为70、75、80和85,而班级B的分数为60、80、80和100。如果我们计算两个班级的平均分,我们发现班级A的平均分为77.5,班级B的平均分为80。然而,如果我们只看平均分,可能会得出班级B整体表现更好的结论。这就是绝对变异性发挥作用的地方。当我们计算两个班级的绝对变异性时,可以看到不同的故事。对于班级A,分数紧密聚集在平均值附近,表明变异性低。相比之下,班级B的分数显示出更广泛的范围,表明其绝对变异性较高。这种差异突显出,即使班级B的平均分较高,但其表现的一致性却低于班级A。理解绝对变异性对于基于数据做出明智决策至关重要。它使分析师和研究人员能够评估不仅是平均表现,还有该平均值的可靠性。例如,在金融领域,了解投资回报的绝对变异性可以帮助投资者理解与不同资产相关的风险。较高的变异性可能表示风险更大的投资,而较低的变异性可能暗示更稳定的回报。此外,绝对变异性在制造业的质量控制过程中也扮演着关键角色。公司通常监控产品尺寸的变异性,以确保它们符合规定标准。如果生产线在产品尺寸上显示出高绝对变异性,这可能表明需要解决的制造过程中的问题。总之,绝对变异性的概念在教育、金融和制造等多个领域都是基础。它提供了对数据一致性和可靠性的洞察,使得更好的决策成为可能。通过理解和应用绝对变异性的原则,个人和组织可以增强其分析能力,并改善基于所收集数据的结果。因此,掌握绝对变异性的概念对于任何参与数据分析或解读的人来说都是至关重要的,因为它开启了对手中信息更深入的理解。

相关单词

absolute

absolute详解:怎么读、什么意思、用法

variability

variability详解:怎么读、什么意思、用法