acceptor molecule
简明释义
受体分子
英英释义
例句
1.The acceptor molecule 受体分子 in this reaction is responsible for stabilizing the transition state.
在这个反应中,受体分子负责稳定过渡态。
2.In organic chemistry, an acceptor molecule 受体分子 can facilitate the transfer of energy between reactants.
在有机化学中,受体分子可以促进反应物之间能量的转移。
3.In photosynthesis, the primary electron acceptor molecule 受体分子 captures electrons from chlorophyll.
在光合作用中,主要的电子受体分子捕获来自叶绿素的电子。
4.The acceptor molecule 受体分子 plays a crucial role in cellular respiration by receiving electrons during the electron transport chain.
在细胞呼吸过程中,受体分子通过在电子传递链中接收电子发挥着至关重要的作用。
5.During the process of nitrogen fixation, an acceptor molecule 受体分子 is essential for capturing nitrogen gas.
在氮固定过程中,受体分子对于捕获氮气是必不可少的。
作文
In the realm of biochemistry, the concept of an acceptor molecule plays a critical role in various biochemical processes, particularly in cellular respiration and photosynthesis. An acceptor molecule is defined as a molecule that receives electrons or protons during a chemical reaction, which is essential for the transfer of energy within biological systems. Understanding the function and significance of acceptor molecules can provide deeper insights into how organisms convert energy from one form to another. During cellular respiration, for instance, glucose is broken down to release energy. This process involves a series of oxidation-reduction reactions where acceptor molecules come into play. Oxygen, which is the final electron acceptor molecule in aerobic respiration, combines with electrons and protons to form water. This reaction is crucial because it helps maintain the flow of electrons through the electron transport chain, ultimately leading to the production of ATP, the primary energy currency of the cell. Without the presence of an acceptor molecule like oxygen, the entire process would be disrupted, leading to a significant decrease in energy production. Similarly, in photosynthesis, acceptor molecules are vital for capturing energy from sunlight. Chlorophyll absorbs light energy and initiates the process of converting carbon dioxide and water into glucose and oxygen. Here, NADP+ acts as an important acceptor molecule, receiving electrons during the light-dependent reactions. When NADP+ accepts these electrons, it is reduced to NADPH, which is then utilized in the Calvin cycle to synthesize glucose. This illustrates how acceptor molecules are not only involved in energy transfer but also play a key role in the synthesis of organic compounds necessary for life. The importance of acceptor molecules extends beyond just energy metabolism; they are also fundamental to many biochemical pathways. For example, in the process of fermentation, which occurs in the absence of oxygen, other types of acceptor molecules such as pyruvate take on a crucial role. In this case, pyruvate accepts electrons from NADH, allowing glycolysis to continue producing ATP even when oxygen is scarce. This adaptability demonstrates the versatility of acceptor molecules in supporting life under varying environmental conditions. Moreover, the study of acceptor molecules has broader implications in fields such as medicine and environmental science. Understanding how these molecules function can lead to advancements in drug development, where targeting specific acceptor molecules may enhance the efficacy of treatments. Additionally, research on acceptor molecules can contribute to our understanding of metabolic disorders and their management. In conclusion, acceptor molecules are integral to numerous biochemical processes that sustain life. Their ability to accept electrons or protons facilitates energy transfer and metabolic pathways essential for cellular function. By studying these molecules, scientists can uncover the intricacies of biological systems and develop innovative solutions to address health and environmental challenges. The exploration of acceptor molecules is a testament to the complexity and interconnectedness of life at the molecular level, highlighting the importance of these tiny yet powerful components in the grand tapestry of existence.
在生物化学领域,受体分子的概念在各种生化过程中扮演着关键角色,特别是在细胞呼吸和光合作用中。受体分子被定义为在化学反应中接收电子或质子的分子,这对于生物系统内能量的转移至关重要。理解受体分子的功能和重要性可以深入了解生物体如何将能量从一种形式转化为另一种形式。例如,在细胞呼吸过程中,葡萄糖被分解以释放能量。这个过程涉及一系列氧化还原反应,其中受体分子发挥了作用。氧气是有氧呼吸中最终的电子受体分子,它与电子和质子结合形成水。这一反应至关重要,因为它有助于维持电子通过电子传递链的流动,最终导致ATP的生成,ATP是细胞的主要能量货币。如果没有像氧气这样的受体分子的存在,整个过程将会受到干扰,导致能量生产显著减少。同样,在光合作用中,受体分子对捕获阳光能量至关重要。叶绿素吸收光能并启动将二氧化碳和水转化为葡萄糖和氧气的过程。在这里,NADP+作为一个重要的受体分子,在光依赖反应中接受电子。当NADP+接受这些电子时,它被还原为NADPH,然后在卡尔文循环中用于合成葡萄糖。这表明,受体分子不仅参与能量转移,还在合成生命所需的有机化合物中发挥关键作用。受体分子的重要性不仅限于能量代谢;它们也是许多生化途径的基础。例如,在缺氧的情况下发生的发酵过程中,其他类型的受体分子如丙酮酸扮演着关键角色。在这种情况下,丙酮酸接受来自NADH的电子,使得即使在缺氧的情况下,糖酵解也能继续产生ATP。这种适应性展示了受体分子在支持生命方面的多样性。此外,对受体分子的研究在医学和环境科学等领域有更广泛的意义。理解这些分子的功能可以推动药物开发的进步,针对特定的受体分子可能会增强治疗效果。此外,对受体分子的研究可以帮助我们理解代谢紊乱及其管理。总之,受体分子是维持生命的众多生化过程的核心。它们接受电子或质子的能力促进了细胞功能所必需的能量转移和代谢途径。通过研究这些分子,科学家可以揭示生物系统的复杂性,并开发创新解决方案,以应对健康和环境挑战。对受体分子的探索证明了生命在分子层面的复杂性和相互联系,突显了这些微小而强大的组成部分在存在的宏伟织锦中的重要性。
相关单词