cladistics
简明释义
n. [遗] 遗传分类学;支序分类学
英英释义
单词用法
系统发生树 | |
系统发生分类 | |
系统发生学方法 | |
系统发生学框架 | |
系统发生学与系统发育 | |
系统发生学与传统分类法对比 | |
基于共享特征的系统发生学 | |
进化生物学中的系统发生学 |
同义词
反义词
例句
1.Using cladistics methods, we studied both outer and osteological characters of 4 fish groups, Cyprinus, Barbodes, Schizothorax (Racoma) and Paracobitis, endemic to Erhai Lake.
本文应用分支系统学方法,选取外部及骨骼形态学特征,对洱海特有的鲤属、四须鲃属、裂腹鱼属弓鱼亚属和副鳅属进行了研究。
2.Using cladistics methods, we studied both outer and osteological characters of 4 fish groups, Cyprinus, Barbodes, Schizothorax (Racoma) and Paracobitis, endemic to Erhai Lake.
本文应用分支系统学方法,选取外部及骨骼形态学特征,对洱海特有的鲤属、四须鲃属、裂腹鱼属弓鱼亚属和副鳅属进行了研究。
3.Based on the principles and methods of cladistics, the phylogeny in Kengyilia of Poaceae is analysed in the present paper.
基于分支系统学的原理和方法,对禾本科以礼草属进行了系统发育分析。
4.The phylogeny of the known 427 genera of Tenthredinoidea of world was reconstructed using the principle and methods of cladistics.
应用支序系统学原理和方法研究了膜翅目叶蜂总科世界已知427属的系统发育关系。
5.In evolutionary biology, cladistics is used to classify organisms based on shared derived characteristics.
在进化生物学中,分支分类法用于根据共享的衍生特征对生物进行分类。
6.Using cladistics, researchers can identify which species share a more recent common ancestor.
通过使用分支分类法,研究人员可以识别哪些物种共享更近的共同祖先。
7.The study of cladistics helps scientists understand the evolutionary relationships between species.
对分支分类法的研究帮助科学家理解物种之间的进化关系。
8.The principles of cladistics have revolutionized the field of systematics.
对分支分类法的原则的应用彻底改变了系统分类学领域。
9.Many modern taxonomists rely on cladistics to create more accurate phylogenetic trees.
许多现代分类学家依赖分支分类法来创建更准确的系统发育树。
作文
Cladistics is a method of classifying living organisms based on their evolutionary relationships. In this approach, organisms are grouped together according to shared characteristics derived from common ancestors. This scientific discipline has profoundly influenced the way biologists understand the complexities of life on Earth. The term itself, cladistics, comes from the Greek word 'klados', meaning 'branch'. Therefore, cladistics can be thought of as a way to illustrate the branching patterns of evolution. The importance of cladistics lies in its ability to provide a more accurate representation of the evolutionary history of organisms compared to traditional classification methods. Traditionally, organisms were classified based on superficial similarities and differences, which often led to misleading conclusions about their relationships. However, cladistics seeks to uncover the true lineage of organisms by focusing on derived traits that indicate a shared ancestry.One of the key principles of cladistics is the concept of monophyletic groups, or clades. A clade consists of an ancestor and all its descendants, forming a complete branch on the tree of life. This contrasts with paraphyletic groups, which include some but not all descendants of a common ancestor, and polyphyletic groups, which do not share a recent common ancestor. By identifying these clades, scientists can construct phylogenetic trees that visually represent the evolutionary pathways of different species.In practice, the application of cladistics involves analyzing various characteristics of organisms, such as morphological features, genetic data, and behavioral traits. For instance, DNA sequencing has revolutionized the field of cladistics by providing molecular evidence that can confirm or challenge previously established relationships. This molecular approach allows researchers to delve deeper into the genetic makeup of organisms, revealing connections that might not be evident through morphological analysis alone.Moreover, cladistics plays a crucial role in understanding biodiversity and conservation efforts. By accurately depicting the relationships among species, scientists can identify which species are most closely related and therefore may share similar ecological roles. This information is vital for conservation strategies, as protecting a single species can have far-reaching effects on its relatives and the ecosystem as a whole.Despite its advantages, cladistics is not without challenges. One major issue is the potential for conflicting data, especially when different traits suggest different evolutionary relationships. Additionally, the reliance on specific data sets can sometimes lead to incomplete or biased interpretations of evolutionary history. Therefore, researchers must use rigorous methods and remain open to revising their hypotheses as new information becomes available.In conclusion, cladistics offers a powerful framework for understanding the evolutionary relationships among living organisms. By focusing on shared ancestry and the branching patterns of evolution, it provides a clearer picture of how life has evolved over time. As our understanding of genetics and evolution continues to grow, the methods of cladistics will undoubtedly evolve, leading to even greater insights into the complex web of life on our planet. Through this lens, we can appreciate the intricate connections that bind all living things together, emphasizing the unity and diversity of life on Earth.
系统发育学是一种基于生物进化关系对生物进行分类的方法。在这种方法中,生物根据共享的特征和共同祖先被分组。这个科学学科深刻影响了生物学家对地球上生命复杂性的理解。术语系统发育学源于希腊词'klados',意为'分支'。因此,系统发育学可以被视为一种展示进化分支模式的方法。系统发育学的重要性在于它能够提供比传统分类方法更准确的生物进化历史表示。传统上,生物是根据表面相似性和差异进行分类的,这往往导致对它们关系的误导性结论。然而,系统发育学试图通过关注源自共同祖先的派生特征来揭示生物的真实谱系。系统发育学的一个关键原则是单系群或类群的概念。类群由一个祖先及其所有后代组成,形成生命树上的一个完整分支。这与并系群相对,后者包括一些但不是所有共同祖先的后代,以及多系群,后者不共享最近的共同祖先。通过识别这些类群,科学家可以构建系统发育树,直观地表示不同物种的进化路径。在实践中,系统发育学的应用涉及分析生物的各种特征,如形态特征、遗传数据和行为特征。例如,DNA测序彻底改变了系统发育学领域,因为它提供了可以确认或挑战先前建立的关系的分子证据。这种分子方法使研究人员能够深入探讨生物的遗传构成,揭示可能通过形态分析无法明显看出的联系。此外,系统发育学在理解生物多样性和保护工作中发挥着至关重要的作用。通过准确描绘物种之间的关系,科学家可以识别哪些物种最密切相关,因此可能共享相似的生态角色。这些信息对保护策略至关重要,因为保护单一物种可能对其亲属和整个生态系统产生深远的影响。尽管有其优势,系统发育学也面临挑战。一个主要问题是潜在的数据冲突,特别是当不同特征暗示不同的进化关系时。此外,依赖特定数据集有时可能导致对进化历史的不完整或偏见解释。因此,研究人员必须使用严格的方法,并在新信息出现时保持开放态度,以修正他们的假设。总之,系统发育学为理解生物之间的进化关系提供了强大的框架。通过关注共享的祖先和进化的分支模式,它提供了生命如何随时间演变的更清晰的图景。随着我们对遗传学和进化的理解不断增长,系统发育学的方法无疑会不断演变,从而带来对我们星球上生命复杂网络的更深刻洞察。通过这一视角,我们可以欣赏到将所有生物联系在一起的错综复杂的联系,强调了地球生命的统一性和多样性。