microgravity
简明释义
英[ˈmaɪkrə(ʊ)ˌgrævɪtɪ]美[ˌmaɪkroˈɡrævɪti]
n. [生理] 微重力
英英释义
A condition in which objects appear to be weightless and experience very low gravitational forces, typically occurring in space or during free fall. | 一种物体似乎无重并经历非常低的引力的状态,通常发生在太空或自由下落期间。 |
单词用法
微重力研究 | |
微重力环境 | |
微重力的影响 | |
微重力实验 | |
在微重力中生活 | |
在微重力中进行实验 | |
适应微重力 | |
微重力的好处 | |
微重力的挑战 | |
在微重力中进行的研究 |
同义词
反义词
重力 | 物体因重力而落到地面。 | ||
正常重力 | Normal gravity affects how we move and interact with our environment. | 正常重力影响我们如何移动和与环境互动。 |
例句
1.Microgravity is quantified by the level of the micro-gravitational acceleration.
微重力用微重力加速度的值度量。
2.Objective To provide direct evidences for effects of microgravity on structure and function of plasma membrane.
目的从胁迫的角度为微重力影响质膜的结构和功能提供直接的证据。
3.Conclusion: the results suggested that microgravity probably could not affect the morphological development of cochlea neurons of chicken embryo.
结论:本研究结果提示微重力对耳蜗神经元的形态发育可能无影响。
4.The damage and overheating of wire insulation are main ignition source in the fire incidents of the manned spacecraft in microgravity.
导线绝缘层的过热以及由此发生的着火和燃烧是载人航天飞行器中引起火灾的主要原因。
5.To get the ISS research back on track, CASIS has examined more than 100 previous microgravity experiments to identify promising research themes.
为了让国际空间站的研究回到正轨,空间科学促进中心(CASIS)已经考察了100多次以前的微重力实验,以确定有前景的研究主题。
6.In this paper, flame spreading over solid combustibles in a microgravity environment has been investigated.
本文研究了微重力条件下固体可燃物表面的火焰传播过程。
7.The results of this study demonstrated that the simulated microgravity by RCCS can improve the quality of tissue-engineered cartilage formed in vitro.
旋转培养仪提供的模拟微重力环境,可以提高工程化软骨的质量。
8.The effects of microgravity (微重力) on human health are still being studied.
对人类健康的微重力
影响仍在研究中。
9.Researchers are exploring how microgravity (微重力) affects the growth of plants.
研究人员正在探索微重力
如何影响植物的生长。
10.In microgravity (微重力), fluids behave differently than they do on Earth.
在微重力
条件下,流体的行为与地球上不同。
11.Astronauts conduct experiments in a state of microgravity (微重力) aboard the International Space Station.
宇航员在国际空间站的微重力
状态下进行实验。
12.Experiments in microgravity (微重力) can lead to advancements in materials science.
在微重力
环境中的实验可以推动材料科学的进步。
作文
Microgravity, often referred to as a condition of near-weightlessness, occurs when objects are in free fall, creating an environment where gravitational forces are significantly reduced. This phenomenon is commonly experienced in space, particularly aboard the International Space Station (ISS). In this unique setting, astronauts and scientific instruments are subjected to a state of microgravity (微重力), allowing researchers to conduct experiments that would be impossible under normal Earth conditions.The implications of microgravity (微重力) research are vast and varied. One of the most significant areas of study involves the effects of microgravity (微重力) on biological organisms. Scientists have discovered that plants behave differently in a microgravity (微重力) environment. For example, roots may grow in unexpected directions, and germination rates can vary. Understanding these changes is crucial for future long-duration space missions, especially if humans are to colonize other planets.Moreover, microgravity (微重力) allows researchers to investigate the behavior of fluids. On Earth, gravity influences how liquids behave, but in a microgravity (微重力) environment, surface tension becomes a dominant force. This has led to groundbreaking discoveries in fluid dynamics, which could have applications ranging from improved medical devices to more efficient fuel systems for spacecraft.The study of materials science also benefits greatly from microgravity (微重力) experiments. When materials are processed in microgravity (微重力), they can form purer and more homogeneous structures. This has potential applications in manufacturing stronger and lighter materials for use in aerospace and other industries. For instance, alloys that are created in a microgravity (微重力) environment may exhibit enhanced properties compared to those made on Earth.In addition to scientific research, microgravity (微重力) environments provide valuable training for astronauts. Living and working in microgravity (微重力) requires a different set of skills and adaptations. Astronauts must learn how to navigate, operate equipment, and perform tasks without the assistance of gravity. This training is essential for ensuring their safety and effectiveness during missions.Furthermore, the experience of living in microgravity (微重力) can have profound psychological effects on astronauts. The sensation of floating and the lack of familiar environmental cues can lead to feelings of disorientation and isolation. Understanding these psychological impacts is crucial for mission planning and the well-being of astronauts on long-term missions.In conclusion, microgravity (微重力) is more than just a scientific curiosity; it is a critical factor in understanding the universe and advancing technology. From studying the fundamental principles of biology and physics to developing new materials and preparing astronauts for future exploration, the research conducted in microgravity (微重力) has far-reaching implications. As we continue to explore space, the insights gained from microgravity (微重力) studies will undoubtedly play a pivotal role in shaping our future endeavors beyond Earth.
微重力,通常被称为近乎无重的状态,发生在物体自由下落时,创造出一种重力作用显著减弱的环境。这种现象在太空中尤为常见,特别是在国际空间站(ISS)上。在这个独特的环境中,宇航员和科学仪器处于微重力(microgravity)状态,使研究人员能够进行在地球正常条件下不可能进行的实验。微重力(microgravity)研究的影响广泛而多样。其中一个重要的研究领域涉及微重力(microgravity)对生物体的影响。科学家发现植物在微重力(microgravity)环境中的表现不同。例如,根部可能朝意想不到的方向生长,发芽率也可能有所不同。理解这些变化对未来长时间的太空任务至关重要,尤其是如果人类要殖民其他行星。此外,微重力(microgravity)还使研究人员能够调查流体的行为。在地球上,重力影响液体的行为,但在微重力(microgravity)环境中,表面张力成为主导力量。这导致了流体动力学方面的突破性发现,这些发现可能应用于从改进医疗设备到更高效的航天器燃料系统等多个领域。材料科学的研究也极大受益于微重力(microgravity)实验。当材料在微重力(microgravity)中加工时,它们可以形成更纯净和更均匀的结构。这在制造更强大、更轻便的材料方面具有潜在应用,适用于航空航天和其他行业。例如,在微重力(microgravity)环境中制造的合金可能比在地球上制造的合金展现出更优异的性能。除了科学研究,微重力(microgravity)环境还为宇航员提供了宝贵的训练。在微重力(microgravity)中生活和工作需要不同的技能和适应能力。宇航员必须学习如何在没有重力的情况下导航、操作设备和执行任务。这种训练对于确保他们在任务期间的安全和有效性至关重要。此外,生活在微重力(microgravity)中可能对宇航员产生深远的心理影响。漂浮的感觉和缺乏熟悉的环境线索可能导致迷失方向和孤立感。理解这些心理影响对任务规划和宇航员的长期福祉至关重要。总之,微重力(microgravity)不仅仅是科学好奇心;它是理解宇宙和推动技术进步的关键因素。从研究生物学和物理学的基本原理到开发新材料以及为宇航员准备未来的探索,在微重力(microgravity)中进行的研究具有深远的影响。随着我们继续探索太空,从微重力(microgravity)研究中获得的见解无疑将在塑造我们超越地球的未来努力中发挥关键作用。