optoacoustic
简明释义
英[ˌɑːp.toʊ.əˈkuː.stɪk]美[ˌɑːp.toʊ.əˈkuː.stɪk]
adj. 光声的
英英释义
Relating to or involving the interaction between light and sound, typically in the context of imaging techniques that utilize both optical and acoustic properties. | 与光和声的相互作用有关,通常在利用光学和声学特性的成像技术中使用。 |
单词用法
同义词
反义词
声学的 | 声学信号用于声纳技术。 | ||
光学的 | 光纤使用光来传输数据。 |
例句
1.This could be used like an optoacoustic version of the radio-frequency bar codes that are used by cars passing through the pay booths of automated toll roads or to tag some goods in shops.
这相当于一个光声版本的无线电频率条形码,可以用在需通过自动收费站的车上,或者给商品打价签。
2.An optoacoustic spectrometer tuned by a grating and with CO2 laser as light source has been established.
我们建立起一个用光栅调谐的、CO_2激光器作光源的激光光声光谱装置。
3.The Doppler-free saturated spectroscopy of the CO2 and SF6 molecules is investigated experimentally by using optoacoustic detection with a resonant multipass cell.
本文使用共振多程池的光声探测法对CO_2和SF_6分子的无多普勒饱和吸收光谱进行了实验研究。
4.This could be used like an optoacoustic version of the radio-frequency bar codes that are used by cars passing through the pay booths of automated toll roads or to tag some goods in shops.
这相当于一个光声版本的无线电频率条形码,可以用在需通过自动收费站的车上,或者给商品打价签。
5.From dressing effect optoacoustic Q-switched YAG pulse laser dressing is superior to conventional mechanical and continuous wave laser dressing.
从修锐效果看,声光调qYAG脉冲激光修锐优于传统机械修锐和连续激光修锐。
6.The new optoacoustic imaging technique allows doctors to visualize blood vessels in real-time.
新的光声成像技术使医生能够实时可视化血管。
7.Researchers are developing optoacoustic sensors to detect tumors at an early stage.
研究人员正在开发光声传感器,以便早期检测肿瘤。
8.By combining ultrasound and light, optoacoustic imaging provides high-resolution images.
通过结合超声波和光,光声成像提供高分辨率图像。
9.The study focused on the use of optoacoustic technology for skin cancer detection.
该研究集中于使用光声技术进行皮肤癌检测。
10.The optoacoustic effect is utilized in various biomedical applications.
光声效应被应用于各种生物医学应用中。
作文
The field of medical imaging has continually evolved, leading to the development of various innovative techniques that enhance our ability to diagnose and treat diseases. One such advancement is the use of optoacoustic (光声) imaging, which combines optical and ultrasound technologies to provide high-resolution images of biological tissues. This technique leverages the principles of light absorption and sound wave generation to create detailed images, making it a powerful tool in the realm of medical diagnostics.The basic principle behind optoacoustic (光声) imaging involves the absorption of laser light by biological tissues. When tissues absorb this light, they undergo rapid thermal expansion, resulting in the generation of ultrasound waves. These waves can be detected and analyzed to reconstruct images of the tissue structure and functionality. One of the remarkable aspects of optoacoustic (光声) imaging is its ability to provide both anatomical and functional information simultaneously. This is particularly useful in identifying tumors, as cancerous tissues often exhibit distinct optical properties compared to surrounding healthy tissues.One of the significant advantages of optoacoustic (光声) imaging is its non-invasive nature. Traditional imaging techniques, such as biopsies or CT scans, often involve some level of invasiveness or exposure to radiation. In contrast, optoacoustic (光声) imaging allows for the visualization of internal structures without the need for incisions or harmful radiation, making it a safer alternative for patients. Additionally, the high spatial resolution of optoacoustic (光声) imaging enables healthcare professionals to detect smaller lesions that may be missed by other imaging modalities.As research in this field continues to expand, the applications of optoacoustic (光声) imaging are becoming increasingly diverse. It is being explored not only for cancer detection but also for monitoring other conditions such as cardiovascular diseases and neurological disorders. For example, in the realm of cardiovascular health, optoacoustic (光声) imaging can be utilized to assess blood flow dynamics and visualize vascular structures, providing critical information for early intervention and treatment.Moreover, advancements in technology have led to the miniaturization of optoacoustic (光声) imaging devices, making them more accessible for clinical use. Portable devices can be used in outpatient settings, allowing for real-time imaging and immediate diagnosis. This accessibility could significantly improve patient outcomes, particularly in underserved areas where access to advanced imaging facilities may be limited.In conclusion, the emergence of optoacoustic (光声) imaging represents a significant leap forward in medical diagnostics. Its unique ability to combine optical and ultrasound techniques provides a comprehensive view of biological tissues, offering valuable insights into various medical conditions. As research progresses and technology advances, we can expect to see even broader applications of optoacoustic (光声) imaging, ultimately enhancing our ability to diagnose and treat diseases effectively. The future of this innovative imaging technique holds great promise for improving patient care and outcomes, making it an exciting area of exploration in the medical field.
医学成像领域不断发展,导致了各种创新技术的出现,这些技术增强了我们诊断和治疗疾病的能力。其中一项进展是利用optoacoustic(光声)成像,它结合了光学和超声技术,以提供生物组织的高分辨率图像。这项技术利用光吸收和声波产生的原理来创建详细的图像,使其成为医学诊断领域的一种强大工具。optoacoustic(光声)成像的基本原理涉及激光光线被生物组织吸收。当组织吸收这种光时,会发生快速的热膨胀,导致超声波的产生。这些波可以被检测和分析,以重建组织结构和功能的图像。optoacoustic(光声)成像的一个显著方面是它能够同时提供解剖和功能信息。这在识别肿瘤时特别有用,因为癌变组织通常与周围健康组织表现出不同的光学特性。optoacoustic(光声)成像的一个重要优势是其非侵入性。传统成像技术,如活检或CT扫描,通常涉及一定程度的侵入性或辐射暴露。相比之下,optoacoustic(光声)成像允许可视化内部结构,而无需切口或有害辐射,从而为患者提供更安全的替代方案。此外,optoacoustic(光声)成像的高空间分辨率使医疗专业人员能够检测到其他成像方式可能遗漏的小病变。随着该领域研究的不断扩展,optoacoustic(光声)成像的应用变得越来越多样化。它不仅被用于癌症检测,还被用于监测心血管疾病和神经系统疾病等其他疾病。例如,在心血管健康领域,optoacoustic(光声)成像可用于评估血流动态和可视化血管结构,为早期干预和治疗提供关键的信息。此外,技术的进步导致optoacoustic(光声)成像设备的小型化,使其在临床使用中更加可及。便携式设备可以在门诊环境中使用,允许实时成像和即时诊断。这种可及性可能显著改善患者的结果,特别是在对先进成像设施的访问可能有限的服务不足地区。总之,optoacoustic(光声)成像的出现代表了医学诊断的重大飞跃。其独特的光学和超声技术结合的能力提供了生物组织的全面视图,为各种医疗条件提供了宝贵的见解。随着研究的进展和技术的提升,我们可以期待看到optoacoustic(光声)成像的应用范围进一步扩大,最终增强我们有效诊断和治疗疾病的能力。这项创新成像技术的未来对改善患者护理和结果具有巨大潜力,使其成为医学领域中令人兴奋的探索领域。