heterothallic
简明释义
英[ˌhetərəʊˈθælɪk]美[ˌhetəroˈθælɪk]
adj. [植] 雌雄异体的;[植] 异宗配合的
英英释义
Referring to organisms that require two different mating types for sexual reproduction. | 指需要两种不同配偶类型进行有性繁殖的生物。 |
单词用法
异配真菌 | |
异配交配 | |
异配和自配 | |
异配交配类型 |
同义词
反义词
同配子体的 | The homothallic species can reproduce sexually without the need for a compatible partner. | 同配子体的物种可以在没有兼容伴侣的情况下进行有性繁殖。 |
例句
1.This technology provides an important tool for deep going research of heterothallic edible mushroom.
这一技术为深入开展异宗结合食用菌的遗传研究提供了一个重要的工具。
2.This technology provides an important tool for deep going research of heterothallic edible mushroom.
这一技术为深入开展异宗结合食用菌的遗传研究提供了一个重要的工具。
3.The heterothallic 异配生殖的 nature of certain fungi complicates their cultivation in labs.
某些真菌的heterothallic 异配生殖的特性使得它们在实验室中的培养变得复杂。
4.Many algae are heterothallic 异配生殖的, requiring specific conditions for successful fertilization.
许多藻类是heterothallic 异配生殖的,需要特定条件才能成功受精。
5.The study of fungi often reveals that many species are heterothallic 异配生殖的, requiring two different mating types for reproduction.
对真菌的研究常常揭示,许多物种是heterothallic 异配生殖的,需要两种不同的配偶类型才能繁殖。
6.Research on heterothallic 异配生殖的 plants shows how they can adapt to environmental changes.
对heterothallic 异配生殖的植物的研究表明,它们如何适应环境变化。
7.In heterothallic 异配生殖的 organisms, genetic diversity is increased by having distinct mating types.
在heterothallic 异配生殖的生物中,通过拥有不同的配偶类型来增加遗传多样性。
作文
In the fascinating world of biology, organisms exhibit a wide range of reproductive strategies that ensure their survival and continuation of their species. One such strategy is known as heterothallic, which refers to a type of sexual reproduction in certain fungi and algae where two genetically distinct individuals are required for reproduction. This contrasts with homothallic organisms, which can reproduce alone due to their ability to produce both male and female gametes. Understanding the concept of heterothallic reproduction is essential for comprehending the complexities of genetic diversity and evolutionary processes.The term heterothallic originates from Greek roots, where 'hetero' means different and 'thallic' pertains to the reproductive structures or thalli of organisms. In heterothallic species, the necessity for two different mating types promotes genetic variation, which is crucial for adapting to changing environments. For instance, when two heterothallic fungi mate, they exchange genetic material, leading to offspring with unique combinations of traits. This process enhances the overall fitness of a population, making it more resilient to diseases and environmental stressors.A prime example of heterothallic organisms can be found in the genus Neurospora, a type of red bread mold. Neurospora species have been extensively studied in genetics due to their heterothallic nature. In these molds, two different mating types must come together to form a fertile ascus, which contains the spores. The requirement for two distinct mating types not only facilitates genetic recombination but also fosters a competitive environment where individuals must locate and interact with others of the opposite mating type, thereby promoting diversity.Moreover, the implications of heterothallic reproduction extend beyond fungi and algae. In plants, some species exhibit heterothallic characteristics, requiring cross-pollination between different plants for successful fertilization. This phenomenon ensures that the resulting seeds carry a mix of genetic material from both parents, enhancing the adaptability of the plant population.The ecological significance of heterothallic reproduction cannot be overstated. By necessitating interactions between different individuals, heterothallic organisms contribute to the dynamic web of life. They play a vital role in maintaining biodiversity, which is essential for ecosystem stability. In contrast, homothallic species, while capable of self-fertilization, may lead to inbreeding and reduced genetic variability over time, ultimately jeopardizing their long-term survival.In conclusion, the concept of heterothallic reproduction highlights the intricate mechanisms through which organisms adapt and thrive in their environments. It underscores the importance of genetic diversity in promoting resilience against challenges faced in nature. As we continue to explore the complexities of biological reproduction, the study of heterothallic organisms will undoubtedly provide valuable insights into the evolutionary strategies that sustain life on Earth.
在生物学的迷人世界中,生物体表现出多种生殖策略,以确保它们的生存和物种的延续。其中一种策略被称为异配性,指的是某些真菌和藻类中需要两个基因不同的个体进行繁殖的一种性别繁殖方式。这与同配性生物形成对比,后者由于能够同时产生雄性和雌性配子而可以独自繁殖。理解异配性繁殖的概念对于理解遗传多样性和进化过程的复杂性至关重要。术语异配性源于希腊语,其中“异”意为不同,“配子”与生物的生殖结构或配子相关。在异配性物种中,两个不同的交配类型的必要性促进了遗传变异,这对于适应不断变化的环境至关重要。例如,当两种异配性真菌交配时,它们会交换遗传物质,从而产生具有独特特征组合的后代。这个过程增强了种群的整体适应能力,使其更能抵抗疾病和环境压力。一个典型的异配性生物的例子可以在红面包霉属(Neurospora)中找到,这是一种真菌。由于其异配性特征,Neurospora物种在遗传学中得到了广泛研究。在这些霉菌中,必须将两种不同的交配类型结合在一起,才能形成一个可育的子囊,其中包含孢子。对两种不同交配类型的需求不仅促进了遗传重组,还培养了竞争环境,在这种环境中,个体必须寻找并与另一种交配类型的个体互动,从而促进多样性。此外,异配性繁殖的影响不仅限于真菌和藻类。在植物中,一些物种表现出异配性特征,要求不同植物之间进行异花授粉以成功受精。这一现象确保了所产生的种子携带来自两个亲本的遗传物质的混合,从而增强了植物种群的适应能力。异配性繁殖的生态意义不可低估。通过要求不同个体之间的相互作用,异配性生物体有助于维持生命的动态网络。它们在维持生物多样性方面发挥着至关重要的作用,而生物多样性对于生态系统的稳定性至关重要。相比之下,虽然同配性物种能够自我授粉,但随着时间的推移,可能导致近亲繁殖和遗传变异减少,从而最终危及其长期生存。总之,异配性繁殖的概念突显了生物体适应和在其环境中生存的复杂机制。它强调了遗传多样性在促进抵御自然挑战中的重要性。随着我们继续探索生物繁殖的复杂性,对异配性生物的研究无疑将为我们提供宝贵的见解,帮助我们理解维持地球生命的进化策略。