chiasmata
简明释义
交叉
英英释义
单词用法
同义词
交叉 | 在减数分裂过程中,交叉发生在交叉点上。 | ||
交叉点 | 交叉点对遗传多样性至关重要。 |
反义词
未配对的 | The chromosomes are unpaired during certain stages of meiosis. | 在减数分裂的某些阶段,染色体是未配对的。 | |
分离 | Disjunction occurs when homologous chromosomes separate during anaphase. | 在后期,同源染色体分离时发生分离。 |
例句
1.Conclusion: Homologues pairing in mice is in different ways, the number of chiasmata and crossing over is various too.
结论:大多数同源染色体以不同方式进行配对,交叉互换的数目也各不相同。
2.Conclusion: Homologues pairing in mice is in different ways, the number of chiasmata and crossing over is various too.
结论:大多数同源染色体以不同方式进行配对,交叉互换的数目也各不相同。
3.Genetic recombination can occur without the formation of a chiasmata.
遗传重组在没有形成交叉的情况下,也可以发生。
4.In a lab experiment, students studied the role of chiasmata 交叉点 in genetic recombination.
在实验室实验中,学生们研究了 chiasmata 交叉点 在遗传重组中的作用。
5.Researchers observed that the number of chiasmata 交叉点 can vary between different species of plants.
研究人员观察到,不同植物物种之间的 chiasmata 交叉点 数量可能有所不同。
6.During meiosis, the formation of chiasmata 交叉点 is crucial for genetic diversity.
在减数分裂过程中,chiasmata 交叉点 的形成对遗传多样性至关重要。
7.The process of crossing over occurs at the chiasmata 交叉点 during prophase I of meiosis.
在减数分裂的前期 I 阶段,交叉互换发生在 chiasmata 交叉点 处。
8.The presence of chiasmata 交叉点 indicates that homologous chromosomes are exchanging genetic material.
存在 chiasmata 交叉点 表明同源染色体正在交换遗传物质。
作文
In the world of genetics, the term chiasmata refers to the points where homologous chromosomes exchange genetic material during meiosis. This process is crucial for genetic diversity and is a fundamental aspect of sexual reproduction. Understanding chiasmata not only helps in grasping the mechanics of heredity but also sheds light on the evolutionary processes that shape populations over time. During the first meiotic division, homologous chromosomes pair up in a process known as synapsis. At this stage, the chromosomes are closely aligned and can interact with one another. The physical connections formed at these points of contact are referred to as chiasmata. These connections allow for crossing over, where segments of DNA are swapped between the paired chromosomes. This exchange of genetic material increases genetic variability among offspring, which is essential for adaptation and evolution. The formation of chiasmata occurs during prophase I of meiosis. As the process unfolds, the chromosomes condense, and the nuclear envelope breaks down, allowing the spindle apparatus to attach to the chromosomes. The presence of chiasmata is vital because it holds the homologous chromosomes together until they are separated into different cells. Without this mechanism, the proper distribution of genetic material would be compromised, leading to issues such as aneuploidy, where cells have an abnormal number of chromosomes. Moreover, the study of chiasmata has broader implications in the field of genetics. For instance, researchers have found that the number and positioning of chiasmata can influence genetic recombination rates, which in turn affects traits that are passed down through generations. Understanding these patterns can help scientists predict how certain traits may manifest in future generations, thus providing insights into inheritance and disease susceptibility. In addition to their role in genetics, chiasmata also serve as a reminder of the complexity of biological systems. The intricate dance of chromosomes during meiosis is a beautiful example of how life perpetuates itself through careful regulation and interaction at the molecular level. It highlights the importance of cooperation and exchange, themes that resonate beyond biology and into our daily lives. In conclusion, chiasmata play a critical role in the process of meiosis, enabling genetic recombination and ensuring the proper segregation of chromosomes. Their study not only enhances our understanding of genetic inheritance but also underscores the intricate mechanisms that drive evolution and diversity in living organisms. As we continue to explore the depths of genetics, the significance of chiasmata will undoubtedly remain a focal point for researchers and educators alike, emphasizing the beauty of life's complexity and the interconnectedness of all living things.
在遗传学的世界中,术语chiasmata指的是同源染色体在减数分裂过程中交换遗传物质的点。这个过程对于遗传多样性至关重要,也是性繁殖的基本方面。理解chiasmata不仅有助于掌握遗传机制,还能揭示塑造种群的进化过程。在第一次减数分裂中,同源染色体通过一种称为联会的过程配对。在这个阶段,染色体紧密排列,可以相互作用。这些接触点形成的物理连接被称为chiasmata。这些连接允许交叉互换,即在配对的染色体之间交换DNA片段。遗传物质的这种交换增加了后代之间的遗传变异性,这对于适应和进化至关重要。chiasmata的形成发生在减数分裂的前期I。在这个过程中,染色体凝缩,核膜破裂,纺锤体装置附着在染色体上。chiasmata的存在至关重要,因为它将同源染色体保持在一起,直到它们被分离到不同的细胞中。如果没有这个机制,遗传物质的正确分配将受到影响,导致如非整倍体等问题,即细胞具有异常数量的染色体。此外,对chiasmata的研究在遗传学领域具有更广泛的意义。例如,研究人员发现,chiasmata的数量和位置可以影响遗传重组率,从而影响世代相传的特征。理解这些模式可以帮助科学家预测某些特征在未来几代中可能如何表现,从而提供对遗传和疾病易感性的洞察。除了在遗传学中的作用外,chiasmata还提醒我们生物系统的复杂性。减数分裂过程中染色体的复杂舞蹈是生命通过分子层面的精心调节和相互作用自我延续的美丽例证。它强调了合作与交流的重要性,这些主题超越了生物学,延伸到我们的日常生活中。总之,chiasmata在减数分裂过程中发挥着关键作用,使遗传重组成为可能,并确保染色体的正确分离。它们的研究不仅增强了我们对遗传继承的理解,还突显了驱动生物体进化和多样性的复杂机制。随着我们继续探索遗传学的深度,chiasmata的重要性无疑将继续成为研究者和教育者关注的焦点,强调生命复杂性和所有生物相互联系的美丽。