stereochemistry
简明释义
英[ˌsterɪəʊˈkemɪstri]美[ˌstɪərɪoˈkemɪstri]
n. [化学] 立体化学
英英释义
Stereochemistry is the branch of chemistry that studies the spatial arrangement of atoms in molecules and how this affects their chemical behavior. | 立体化学是化学的一个分支,研究分子中原子的空间排列及其对化学行为的影响。 |
单词用法
立体化学分析 | |
立体化学构型 | |
光学立体化学 | |
相对立体化学 |
同义词
反义词
无手性的 | A molecule is achiral if it cannot be superimposed on its mirror image. | 如果一个分子不能与其镜像重叠,则该分子是无手性的。 | |
非立体化学的 | Non-stereochemical compounds do not exhibit stereoisomerism. | 非立体化合物不表现出立体异构现象。 |
例句
1.The organic groups can control and modify the structure of inorganic framework, for its rigidity in conjunct mode, flexibility in stereochemistry and strong capability of coordination.
有机基团在结构上具有连接方式的刚性和立体空间的柔韧性以及较强的配位能力,能在很大程度上调控和修饰无机骨架的结构。
2.The present paper reviews the methods used in connection table for the presentation of stereochemistry, particularly for the chiral carbons and double bonds.
本文简要地综述了基于连接表的手性中心和双键立体化学的描述方法。
3.Organic chemistry is so abstract and full of a large number of knowledge that the beginners may find it hard to master, especially the stereochemistry.
尽管有机化学知识点多、抽象,初学者觉得难以掌握,尤其立体化学问题更让人头疼。
4.Their structures and some of the stereochemistry were elucidated by means of various modern spectroscopic techniques and chemical methods.
运用多种现代波谱技术结合化学手段,确定了它们的化学结构和部分立体构型。
5.The relative stereochemistry of the 1, 10-double bond and that of the methoxyl, methyl, and acetoxy groups were determined by NOESY experiments and analyses of the coupling constants.
通过NOESY实验以及偶合常数的分析,确定了其结构中1,10位双键和甲氧基、乙酰氧基、甲基等基团的相对构型。
6.The organic groups can control and modify the structure of inorganic framework, for its rigidity in conjunct mode, flexibility in stereochemistry and strong capability of coordination.
有机基团在结构上具有连接方式的刚性和立体空间的柔韧性以及较强的配位能力,能在很大程度上调控和修饰无机骨架的结构。
7.In organic chemistry, understanding stereochemistry is crucial for predicting the behavior of molecules.
在有机化学中,理解立体化学对于预测分子的行为至关重要。
8.The stereochemistry of a compound can affect its biological activity significantly.
一个化合物的立体化学可以显著影响其生物活性。
9.Students often struggle with the complexities of stereochemistry in their chemistry courses.
学生们在化学课程中常常对立体化学的复杂性感到困惑。
10.During the synthesis of drugs, chemists must carefully consider the stereochemistry to ensure efficacy.
在药物合成过程中,化学家必须仔细考虑立体化学以确保药效。
11.The concept of stereochemistry helps in understanding isomers and their properties.
立体化学的概念有助于理解异构体及其性质。
作文
Stereochemistry is a fascinating branch of chemistry that deals with the three-dimensional arrangement of atoms within molecules. It plays a crucial role in understanding how different substances interact with one another. The term itself can be broken down into two parts: 'stereo,' meaning three-dimensional, and 'chemistry,' which refers to the study of matter and its interactions. This field is essential for various applications, including drug design, where the specific orientation of molecules can determine their effectiveness. For instance, two compounds may have the same molecular formula but differ in their spatial arrangement, leading to vastly different biological activities. This phenomenon is known as stereoisomerism, and it highlights the importance of stereochemistry in the pharmaceutical industry.One of the key concepts in stereochemistry is chirality. A molecule is considered chiral if it cannot be superimposed on its mirror image. This property is vital because many biological systems are chiral and only interact with specific enantiomers, which are pairs of chiral molecules that are mirror images of each other. For example, the amino acid alanine exists in two forms: L-alanine and D-alanine. Only L-alanine is utilized by the body to build proteins, emphasizing the significance of stereochemistry in biochemistry.Moreover, stereochemistry affects the physical properties of compounds, such as boiling points, melting points, and solubility. Understanding these differences can help chemists design better materials and improve industrial processes. In addition, the study of stereochemistry extends beyond organic compounds; it also includes coordination compounds and organometallics, which can exhibit stereochemical behavior due to the arrangement of ligands around a central metal atom.In recent years, advancements in technology have allowed chemists to visualize and manipulate molecular structures in ways that were previously unimaginable. Techniques such as X-ray crystallography and NMR spectroscopy provide insights into the stereochemistry of complex molecules. These tools enable scientists to determine the precise arrangement of atoms, leading to a deeper understanding of how molecular structure influences function.The implications of stereochemistry are vast, impacting not only chemistry but also fields like biology, medicine, and materials science. For example, in the development of new drugs, researchers must consider the stereochemistry of potential candidates to ensure they will interact correctly with biological targets. A drug's efficacy can hinge on its stereochemical configuration, making this knowledge indispensable in drug discovery and development.In conclusion, stereochemistry is a critical area of study that enhances our understanding of molecular interactions and properties. As we continue to explore the complexities of matter at the molecular level, the importance of stereochemistry will undoubtedly grow, paving the way for new discoveries and innovations across multiple scientific disciplines. Whether in the realm of pharmaceuticals, material science, or biological research, the principles of stereochemistry will remain fundamental to our comprehension of the molecular world.
立体化学是一个迷人的化学分支,涉及分子中原子的三维排列。它在理解不同物质如何相互作用方面发挥着至关重要的作用。这个术语本身可以分为两个部分:“立体”,意为三维,“化学”,指的是对物质及其相互作用的研究。该领域对各种应用至关重要,包括药物设计,因为分子的特定取向可以决定其有效性。例如,两种化合物可能具有相同的分子式,但在空间排列上有所不同,导致生物活性截然不同。这种现象被称为立体异构现象,它突显了立体化学在制药工业中的重要性。立体化学中的一个关键概念是手性。如果一个分子不能与其镜像重叠,则该分子被认为是手性的。这个特性至关重要,因为许多生物系统都是手性的,只与特定的对映体相互作用,而对映体是一对手性分子的镜像。例如,氨基酸丙氨酸存在两种形式:L-丙氨酸和D-丙氨酸。只有L-丙氨酸被身体用于构建蛋白质,这强调了立体化学在生物化学中的重要性。此外,立体化学还影响化合物的物理性质,例如沸点、熔点和溶解度。理解这些差异可以帮助化学家设计更好的材料并改善工业过程。此外,立体化学的研究不仅限于有机化合物;它还包括配位化合物和有机金属化合物,由于配体围绕中心金属原子的排列,它们可以表现出立体化学行为。近年来,技术的进步使化学家能够以前所未有的方式可视化和操纵分子结构。X射线晶体学和NMR光谱等技术提供了对复杂分子立体化学的深入了解。这些工具使科学家能够确定原子的精确排列,从而更深入地理解分子结构如何影响功能。立体化学的影响范围广泛,影响不仅是化学,还包括生物学、医学和材料科学等领域。例如,在新药的开发中,研究人员必须考虑潜在候选药物的立体化学,以确保它们将正确与生物靶标相互作用。药物的有效性可能依赖于其立体化学构型,使这一知识在药物发现和开发中不可或缺。总之,立体化学是一个关键的研究领域,增强了我们对分子相互作用和性质的理解。随着我们继续探索分子层面物质的复杂性,立体化学的重要性无疑会增加,为多个科学学科的新发现和创新铺平道路。无论是在制药、材料科学还是生物研究领域,立体化学的原则将始终是我们理解分子世界的基础。