sine
简明释义
n. 正弦
prep. (尤指拉丁词语或法律用语)缺少,没有
【名】 (Sine)(土)西内(人名)
英英释义
单词用法
正弦波 | |
正弦函数 |
同义词
正弦波 | 正弦波是电子学中的基本波形。 | ||
正弦函数 | In trigonometry, the sine function relates the angle of a triangle to the ratio of the length of the opposite side. | 在三角学中,正弦函数将三角形的角度与对边长度的比率相关联。 |
反义词
余弦 | The cosine of an angle is the adjacent side over the hypotenuse. | 一个角的余弦是邻边与斜边的比值。 | |
正切 | The tangent function is defined as the sine divided by the cosine. | 正切函数定义为正弦除以余弦。 |
例句
1.But voters' ability to throw the rascals out at regular intervals is still the indispensable sine qua non.
不过,选民能够定期摒弃一些流氓无赖的能力仍是不可或缺的必要条件。
2.The meeting will adjourn sine die.
这个会议将会无限期休会。
3.We will be doing qualitative questions sin like what is the sine of a partial derivative.
会有一些定性的问题,比如说。
4.Successful agricultural reform is also a sine qua non of Mexico's modernization.
成功的农业改革也是墨西哥实现现代化的必要条件。
5.Performing a CPU Intensive Task - 1,000,000 sine and sum operations.
执行CPU高消耗的任务——100万次sine(正弦)和加法操作。
6.When we think about how to represent sound visually, most of us probably picture those volume-dependent sine waves.
说到如何用图像表示声音,大多数人都会想起与音量有关的正弦曲线。
7.Your reading in the ancients is, sine dubio, of vast extent?
你读过很多古典书籍吗?
8.This number can be larger than zero >0 if the sine theta is larger than zero.
这个数字可以大于,只要sinθ
9.This is the sine wave mentioned in the SAI Principle above.
这就是以上的SAI原理中提到的正弦波浪线。
10.To find the height of a building, you can use the sine of the angle of elevation.
要找出建筑物的高度,可以使用仰角的sine。
11.The length of the opposite side in a right triangle can be calculated using the sine function.
在直角三角形中,对边的长度可以使用sine函数计算。
12.The formula for calculating the area of a triangle involves the sine of one of its angles.
计算三角形面积的公式涉及其中一个角的sine。
13.In physics, the sine of an angle is often used to determine the vertical component of a force.
在物理学中,角度的sine常用于确定力的垂直分量。
14.In trigonometry, the sine function is periodic with a period of 2π.
在三角学中,sine函数是周期性的,周期为2π。
作文
In mathematics, the concept of the sine function is fundamental to trigonometry. The term sine refers to a specific ratio in a right triangle. It is defined as the length of the side opposite an angle divided by the length of the hypotenuse. This simple yet profound relationship allows us to solve many problems involving angles and distances. For instance, if we know one angle and the length of the hypotenuse, we can easily find the length of the opposite side using the sine function. The sine function is not only limited to triangles; it extends into the realm of periodic functions. It forms the basis for wave functions in physics, representing oscillations such as sound waves or light waves. The graph of the sine function is a smooth, continuous wave that oscillates between -1 and 1. This property makes it incredibly useful in various fields, including engineering, physics, and even music. One of the most interesting aspects of the sine function is its periodic nature. The sine function repeats its values in regular intervals, specifically every 360 degrees or 2π radians. This periodicity means that we can predict the behavior of systems that exhibit cyclical patterns. For example, in electrical engineering, alternating current can be modeled using the sine function, allowing engineers to design circuits that operate efficiently. Moreover, the sine function is closely related to other trigonometric functions, such as cosine and tangent. These relationships are essential for solving complex problems in geometry and calculus. By understanding the interconnections between these functions, students can develop a deeper comprehension of mathematical concepts. In addition to its mathematical significance, the sine function has applications in real-world scenarios. For example, architects and builders use the principles of trigonometry to calculate heights and distances when constructing buildings. A simple application might involve determining the height of a building by measuring the distance from a certain point and the angle of elevation to the top of the building. By applying the sine function, they can arrive at accurate measurements without needing to physically measure the height. Furthermore, the sine function plays a crucial role in navigation. Sailors and aviators rely on trigonometric calculations to determine their position and course. By understanding how to use the sine function in conjunction with other trigonometric ratios, navigators can chart their paths across vast oceans and skies. In conclusion, the sine function is a powerful mathematical tool that transcends its basic definition. Its applications stretch far beyond the classroom, touching various aspects of our daily lives. From architecture to navigation, the sine function helps us understand and interact with the world around us. As students continue to explore the depths of mathematics, mastering the concept of sine will undoubtedly serve them well in their future endeavors.
在数学中,sine 函数的概念是三角学的基础。术语 sine 指的是直角三角形中的特定比率。它被定义为一个角对面的边的长度与斜边的长度之比。这种简单而深刻的关系使我们能够解决许多涉及角度和距离的问题。例如,如果我们知道一个角和斜边的长度,我们可以轻松地使用 sine 函数找到对边的长度。sine 函数不仅限于三角形;它扩展到周期性函数的领域。它构成了物理学中波函数的基础,代表了声音波或光波等振荡。sine 函数的图形是一条平滑、连续的波,波动范围在 -1 和 1 之间。这一特性使其在工程、物理甚至音乐等多个领域中极具实用性。sine 函数最有趣的方面之一是其周期性。sine 函数以规律的间隔重复其值,具体为每 360 度或 2π 弧度。这种周期性意味着我们可以预测表现出周期性模式的系统的行为。例如,在电气工程中,交流电可以用 sine 函数建模,使工程师能够设计高效运行的电路。此外,sine 函数与其他三角函数(如余弦和正切)密切相关。这些关系对于解决几何和微积分中的复杂问题至关重要。通过理解这些函数之间的相互联系,学生可以更深入地理解数学概念。除了其数学意义外,sine 函数在现实世界场景中也有应用。例如,建筑师和施工人员利用三角学原理计算建筑物的高度和距离。当建造建筑时,一个简单的应用可能涉及通过测量某一点的距离和到建筑顶部的仰角来确定建筑的高度。通过应用 sine 函数,他们可以在不需要实际测量高度的情况下得出准确的测量结果。此外,sine 函数在导航中也发挥着至关重要的作用。水手和飞行员依赖三角计算来确定他们的位置和航向。通过理解如何将 sine 函数与其他三角比率结合使用,导航员可以在广阔的海洋和天空中绘制他们的航线。总之,sine 函数是一个强大的数学工具,超越了其基本定义。它的应用远远超出了课堂,触及我们日常生活的各个方面。从建筑到导航,sine 函数帮助我们理解并与周围的世界互动。随着学生继续探索数学的深度,掌握 sine 的概念无疑将在他们未来的努力中大有裨益。