fractography

简明释义

[frækˈtɒɡrəfi][frækˈtɑːɡrəfi]

n. 金属断面的显微镜观察;参差表面描绘术(断口组织的显微镜观察)

英英释义

Fractography is the study of fracture surfaces in materials to understand the failure mechanisms and characteristics of the material.

断裂图谱学是研究材料中断裂表面的学科,以理解材料的失效机制和特性。

单词用法

fractography analysis

断裂图谱分析

fractography techniques

断裂图谱技术

fractography examination

断裂图谱检查

fractography of materials

材料的断裂图谱

fractography in engineering

工程中的断裂图谱

fractography and failure analysis

断裂图谱与失效分析

同义词

fracture analysis

断裂分析

Fracture analysis is essential for understanding the failure modes of materials.

断裂分析对于理解材料的失效模式至关重要。

fracture mechanics

断裂力学

In engineering, fracture mechanics helps predict the growth of cracks in materials.

在工程中,断裂力学有助于预测材料中裂纹的扩展。

failure analysis

失效分析

Failure analysis can provide insights into the causes of structural failures.

失效分析可以提供对结构失效原因的深入了解。

反义词

integrity

完整性

The integrity of the material is crucial for its performance.

材料的完整性对其性能至关重要。

continuity

连续性

Ensuring continuity in the structure can prevent failures.

确保结构的连续性可以防止故障。

例句

1.The fractography of the fatigue crack initiation displayed cleavage facet and more second cracks after pre-training.

裂纹形成的断裂为穿晶解理机制,预应变可导致更多的二次裂纹。

2.The rib fractography of cross-linked PMMA has been explored by optical microscopy.

用光学显微镜观察了交联有机玻璃断面上的肋状形态。

3.We also analyse the relationship between crack growth track and fractography. Thereforde, it is significant for studying the fatigue property of the steel used and its fatigue analy…

本文还对裂纹扩展途径与断口形貌之间的关系进行了分析,对进一步研究低温用钢的疲劳特性和低温下工程结构的失效分析具有重要意义。

4.The stress corrosion cracking sensitivity of the steel was low, and the fractography of its stress corrosion cracking showed transgranular and quasi-cleavage fracture with secondary cracks.

研究表明该钢具有较好的抗应力腐蚀性能,其应力腐蚀断裂形貌为穿晶、解理断裂,并有二次裂纹。

5.The application of electron fractography to the quantitative analysis of fatigue fracture surfaces is discussed in this paper.

本文论述应用电子显微断口分析法对疲劳断面进行定量分析。

6.The stress corrosion cracking sensitivity of the steel was low, and the fractography of its stress corrosion cracking showed transgranular and quasi-cleavage fracture with secondary cracks.

研究表明该钢具有较好的抗应力腐蚀性能,其应力腐蚀断裂形貌为穿晶、解理断裂,并有二次裂纹。

7.Using fractography, the technician identified the weak points in the ceramic material.

技术人员利用断裂图谱学识别出了陶瓷材料的薄弱点。

8.The engineer used fractography to analyze the failure in the metal component.

工程师使用断裂图谱学分析金属部件的故障。

9.In forensic investigations, fractography can help link a suspect to a crime scene.

在法医调查中,断裂图谱学可以帮助将嫌疑人与犯罪现场联系起来。

10.By studying fractography, scientists can determine the cause of material fractures.

通过研究断裂图谱学,科学家可以确定材料断裂的原因。

11.The research team published a paper on the applications of fractography in aerospace engineering.

研究小组发表了一篇关于断裂图谱学在航空航天工程中应用的论文。

作文

Fractography is a fascinating field of study that focuses on the analysis of fracture surfaces in materials. This discipline plays a crucial role in understanding the failure mechanisms of various substances, from metals to ceramics and polymers. By examining the characteristics of fractures, scientists and engineers can gain insights into the conditions that led to the material's failure, ultimately aiding in the design of more resilient products. In essence, fractography (断裂图谱学) is not merely about observing cracks; it is about interpreting the story behind those cracks. The process of fractography (断裂图谱学) begins with the careful examination of a fractured surface. Researchers utilize various techniques, such as optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), to analyze the features present on the fracture surface. These features can include striations, river patterns, and dimples, each indicative of different fracture mechanisms. For instance, the presence of dimples often suggests ductile fracture, while sharp edges may indicate brittle fracture. Understanding these features is essential for identifying the root cause of failure. One of the primary applications of fractography (断裂图谱学) is in the field of materials science. Engineers frequently encounter situations where materials fail under stress, leading to catastrophic consequences. By employing fractography (断裂图谱学) to analyze failed components, they can determine whether the failure was due to manufacturing defects, improper material selection, or unforeseen loading conditions. This knowledge is invaluable for improving existing designs and preventing future failures. Moreover, fractography (断裂图谱学) has significant implications in safety-critical industries, such as aerospace and automotive engineering. In these sectors, the integrity of materials is paramount, and even minor flaws can lead to disastrous outcomes. For instance, when an aircraft wing experiences a fracture, engineers can use fractography (断裂图谱学) to assess the fracture's origin and propagation. This information helps in developing better inspection techniques and maintenance schedules, ensuring that potential issues are addressed before they escalate. In addition to its practical applications, fractography (断裂图谱学) also contributes to academic research. Scientists are continually exploring new materials and their behavior under various conditions. By studying fracture surfaces, researchers can develop improved materials with enhanced properties, such as increased toughness or fatigue resistance. The insights gained from fractography (断裂图谱学) can lead to innovations that benefit numerous industries, including construction, electronics, and biomedical engineering. In conclusion, fractography (断裂图谱学) is a vital area of study that combines art and science to unravel the complexities of material failure. Its ability to provide detailed information about fracture surfaces enables engineers and researchers to make informed decisions regarding material selection, design improvements, and safety measures. As technology advances, the techniques used in fractography (断裂图谱学) will continue to evolve, offering even deeper insights into the behavior of materials under stress. Ultimately, this field not only enhances our understanding of materials but also plays a pivotal role in ensuring the safety and reliability of the products we use every day.

断裂图谱学是一个迷人的研究领域,专注于材料中断裂表面的分析。这一学科在理解各种物质的失效机制方面发挥着至关重要的作用,从金属到陶瓷和聚合物。通过检查断裂的特征,科学家和工程师可以深入了解导致材料失效的条件,最终帮助设计出更具韧性的产品。从本质上讲,fractography(断裂图谱学)不仅仅是观察裂纹;它是关于解读这些裂纹背后的故事。fractography(断裂图谱学)的过程始于对断裂表面的仔细检查。研究人员利用各种技术,如光学显微镜、扫描电子显微镜(SEM)和原子力显微镜(AFM),来分析断裂表面上存在的特征。这些特征可以包括条纹、河流图案和凹坑,每种特征都表明不同的断裂机制。例如,凹坑的存在通常表明韧性断裂,而锋利的边缘可能表明脆性断裂。理解这些特征对于识别失效的根本原因至关重要。fractography(断裂图谱学)的主要应用之一是在材料科学领域。工程师经常遇到材料在应力下失效的情况,这会导致灾难性的后果。通过采用fractography(断裂图谱学)来分析失效组件,他们可以确定失效是否由于制造缺陷、不当的材料选择或不可预见的负载条件造成。这一知识对于改进现有设计和防止未来失效至关重要。此外,fractography(断裂图谱学)在航空航天和汽车工程等安全关键行业中具有重要意义。在这些行业中,材料的完整性至关重要,即使是微小的缺陷也可能导致灾难性结果。例如,当飞机机翼出现断裂时,工程师可以使用fractography(断裂图谱学)来评估断裂的起源和传播。这些信息有助于开发更好的检查技术和维护计划,确保潜在问题在升级之前得到解决。除了其实际应用外,fractography(断裂图谱学)还为学术研究做出了贡献。科学家们不断探索新材料及其在各种条件下的行为。通过研究断裂表面,研究人员可以开发出具有增强性能的新材料,例如提高韧性或疲劳抗力。从fractography(断裂图谱学)获得的见解可以导致有益于众多行业的创新,包括建筑、电子和生物医学工程。总之,fractography(断裂图谱学)是一个重要的研究领域,将艺术与科学结合在一起,揭示材料失效的复杂性。它提供的详细信息关于断裂表面使工程师和研究人员能够就材料选择、设计改进和安全措施做出明智的决策。随着技术的进步,在fractography(断裂图谱学)中使用的技术将继续发展,提供更深入的材料在应力下行为的见解。最终,这一领域不仅增强了我们对材料的理解,而且在确保我们每天使用的产品的安全性和可靠性方面发挥着关键作用。