stereoisomer

简明释义

[ˌsterɪəʊˈaɪsəmə(r)][ˌsterɪoʊˈaɪsəmər]

n. [物化] 立体异构体

英英释义

A stereoisomer is one of two or more compounds that have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space.

立体异构体是指两种或多种化合物,它们具有相同的分子式和原子连接顺序(组成),但在空间中原子的三维取向不同。

单词用法

geometric stereoisomer

几何立体异构体

optical stereoisomer

光学立体异构体

cis-trans stereoisomerism

顺反立体异构现象

stereoisomeric forms

立体异构形式

stereoisomeric configuration

立体异构构型

stereoisomeric relationship

立体异构关系

stereoisomeric compounds

立体异构化合物

study of stereoisomers

立体异构体的研究

同义词

geometric isomer

几何异构体

Geometric isomers have different spatial arrangements of atoms.

几何异构体具有不同的原子空间排列。

optical isomer

光学异构体

Optical isomers can rotate plane-polarized light in different directions.

光学异构体可以以不同的方向旋转平面偏振光。

反义词

constitutional isomer

构造异构体

Constitutional isomers have the same molecular formula but different connectivity of atoms.

构造异构体具有相同的分子式,但原子的连接方式不同。

structural isomer

结构异构体

Structural isomers can exhibit different physical and chemical properties.

结构异构体可以表现出不同的物理和化学性质。

例句

1.The calculation results show that the EA is a new optical stereoisomer and whose great photosensitivity could be related to the chirality of EA molecules.

计算结果表明所制得的痂囊腔菌素A是一种新的光学活性对映体,由此推测痂囊腔菌素A的高光敏活性可能与手性结构特征有关。

2.The calculation results show that the EA is a new optical stereoisomer and whose great photosensitivity could be related to the chirality of EA molecules.

计算结果表明所制得的痂囊腔菌素A是一种新的光学活性对映体,由此推测痂囊腔菌素A的高光敏活性可能与手性结构特征有关。

3.The two stereoisomers 立体异构体 of a drug can have very different effects on the body.

一种药物的两个stereoisomers 立体异构体 对身体的影响可能截然不同。

4.In organic chemistry, a compound can exist as a stereoisomer 立体异构体, which means it has the same molecular formula but different spatial arrangements of atoms.

在有机化学中,一个化合物可以作为一个stereoisomer 立体异构体 存在,这意味着它具有相同的分子式但原子的空间排列不同。

5.Understanding stereoisomers 立体异构体 is essential for predicting the behavior of molecules in biological systems.

理解stereoisomers 立体异构体 对于预测分子在生物系统中的行为至关重要。

6.Identifying a stereoisomer 立体异构体 can be crucial in synthesizing pharmaceuticals.

识别一个stereoisomer 立体异构体 在合成药品中可能至关重要。

7.The stereoisomers 立体异构体 of a compound can be separated using chiral chromatography.

化合物的stereoisomers 立体异构体 可以通过手性色谱法分离。

作文

In the field of chemistry, the concept of stereoisomer (立体异构体) plays a crucial role in understanding the behavior and properties of different molecules. Stereoisomers are compounds that have the same molecular formula and sequence of bonded atoms but differ in the three-dimensional orientations of their atoms in space. This distinction is vital because the spatial arrangement of atoms can significantly affect the physical and chemical properties of a substance. For instance, consider the case of glucose and fructose, which are both sugars with the same molecular formula, C6H12O6. However, they exist as different stereoisomers (立体异构体) due to their unique structural configurations, leading to varying sweetness levels and metabolic pathways in the human body.The two primary types of stereoisomers (立体异构体) are enantiomers and diastereomers. Enantiomers are pairs of stereoisomers (立体异构体) that are mirror images of each other, much like left and right hands. These molecules exhibit different optical activities, meaning they can rotate plane-polarized light in opposite directions. This property is particularly significant in pharmaceuticals, where one enantiomer may be therapeutically active while the other could be inactive or even harmful. A well-known example is the drug thalidomide, which was prescribed in the 1960s. One enantiomer was effective against morning sickness, while the other caused severe birth defects.On the other hand, diastereomers are stereoisomers (立体异构体) that are not mirror images of each other. They have different physical properties and reactivities, which can lead to diverse applications in various fields. For instance, in organic synthesis, chemists often utilize diastereomeric relationships to achieve desired outcomes in reactions. The presence of multiple stereocenters in a molecule can result in a complex mixture of diastereomers, which can be separated and characterized through various methods such as chromatography.The study of stereoisomers (立体异构体) is not limited to organic chemistry; it also extends to biochemistry and materials science. In biochemistry, the functionality of biomolecules such as amino acids and nucleotides relies heavily on their stereochemical configurations. For example, all amino acids in proteins are L-enantiomers, while the D-enantiomers are rarely found in nature. This specificity is critical for the proper functioning of enzymes and metabolic pathways.Moreover, the design of new materials with specific properties often involves manipulating stereoisomers (立体异构体). Researchers are exploring how different stereochemical arrangements can influence the mechanical, thermal, and electrical properties of polymers and nanomaterials. Understanding the relationship between structure and function at the molecular level allows scientists to engineer materials with tailored characteristics for applications in electronics, medicine, and sustainable energy.In conclusion, the concept of stereoisomer (立体异构体) is fundamental in chemistry and related disciplines, highlighting the importance of molecular geometry in determining the properties and behaviors of substances. As research continues to advance, the implications of stereoisomers (立体异构体) will undoubtedly expand, leading to innovative solutions across various scientific fields. Thus, a thorough understanding of stereoisomers (立体异构体) is essential for anyone aspiring to make significant contributions to the world of science and technology.

在化学领域,stereoisomer(立体异构体)这一概念对于理解不同分子的行为和性质起着至关重要的作用。立体异构体是指具有相同分子式和键合原子顺序,但在空间中原子的三维取向上有所不同的化合物。这种区别至关重要,因为原子的空间排列会显著影响物质的物理和化学性质。例如,考虑葡萄糖和果糖的情况,它们都是分子式为C6H12O6的糖。然而,由于它们独特的结构构型,它们作为不同的stereoisomers(立体异构体)存在,导致甜度水平和人体代谢途径的差异。两种主要的stereoisomers(立体异构体)类型是对映体和非对映体。对映体是一对彼此的stereoisomers(立体异构体),它们是彼此的镜像,就像左手和右手一样。这些分子表现出不同的光学活性,意味着它们可以以相反的方向旋转平面偏振光。这一特性在制药领域尤为重要,因为一种对映体可能具有治疗活性,而另一种则可能无效或甚至有害。一个众所周知的例子是沙利度胺,这种药物在1960年代被开处方。一个对映体对早孕恶心有效,而另一个则导致严重的出生缺陷。另一方面,非对映体是指不是彼此镜像的stereoisomers(立体异构体)。它们具有不同的物理性质和反应性,这可能导致在各个领域的多样化应用。例如,在有机合成中,化学家常常利用非对映体之间的关系来实现反应中的预期结果。分子中多个立体中心的存在可能导致复杂的非对映体混合物,这些混合物可以通过色谱等各种方法进行分离和表征。对stereoisomers(立体异构体)的研究不仅限于有机化学;它还扩展到生物化学和材料科学。在生物化学中,生物分子如氨基酸和核苷酸的功能在很大程度上依赖于其立体化学构型。例如,所有蛋白质中的氨基酸都是L-对映体,而D-对映体在自然界中很少见。这种特异性对酶和代谢途径的正常功能至关重要。此外,具有特定性质的新材料的设计通常涉及操控stereoisomers(立体异构体)。研究人员正在探索不同的立体化学排列如何影响聚合物和纳米材料的机械、热和电性质。在分子层面上理解结构与功能之间的关系使科学家能够工程出具有量身定制特性的材料,以用于电子、医学和可持续能源等应用。总之,stereoisomer(立体异构体)的概念在化学及相关学科中是基础的,突显了分子几何形状在决定物质性质和行为方面的重要性。随着研究的不断推进,stereoisomers(立体异构体)的影响无疑将扩大,导致各个科学领域的创新解决方案。因此,深入理解stereoisomers(立体异构体)对于任何希望对科学和技术领域做出重大贡献的人来说都是必不可少的。