supramolecule

简明释义

[ˌsuːprəˈmɒlɪkuːl][ˌsuːprəˈmɒlɪkuːl]

n. 超分子

英英释义

A supramolecule is a complex structure formed by the association of two or more molecules through non-covalent interactions such as hydrogen bonds, van der Waals forces, or ionic bonds.

超分子是通过氢键、范德瓦尔斯力或离子键等非共价相互作用,由两个或多个分子结合形成的复杂结构。

单词用法

同义词

supermolecule

超分子

Supramolecules are often studied in the field of nanotechnology.

超分子常在纳米技术领域进行研究。

反义词

monomer

单体

Monomers are the building blocks of supramolecules.

单体是超分子的基本构件。

simple molecule

简单分子

Simple molecules do not exhibit the complex interactions found in supramolecules.

简单分子不表现出超分子中发现的复杂相互作用。

例句

1.Supramolecule chemistry is an advanced research topic in current chemistry, and the selective synthesis of the host compound is an important aspect.

超分子化学是当今化学界的前沿学科之一,超分子主体化合物的选择性合成是其一个重要的方面。

2.Supramolecule chemistry is an advanced research topic in current chemistry, and the selective synthesis of the host compound is an important aspect.

超分子化学是当今化学界的前沿学科之一,超分子主体化合物的选择性合成是其一个重要的方面。

3.The electronic spectrum and the third order nonlinear polarizability of this supramolecule were examined by ZINDO SOS method.

用ZINDOSOS方法对分子的电子光谱,三阶非线性极化率进行了计算。

4.Researchers are developing a new type of drug delivery system using a supramolecule 超分子 that can target specific cells.

研究人员正在开发一种新的药物递送系统,使用一种可以靶向特定细胞的supramolecule 超分子

5.In nanotechnology, scientists often utilize supramolecule 超分子 structures to create more efficient catalysts.

在纳米技术中,科学家们常常利用supramolecule 超分子结构来创造更高效的催化剂。

6.The properties of the supramolecule 超分子 allow for unique interactions with light, making it useful in photonic devices.

supramolecule 超分子的特性允许与光进行独特的相互作用,使其在光子设备中非常有用。

7.By designing a specific supramolecule 超分子, researchers can create materials with tailored properties.

通过设计特定的supramolecule 超分子,研究人员可以创造出具有定制属性的材料。

8.The stability of the supramolecule 超分子 makes it ideal for use in various industrial applications.

supramolecule 超分子的稳定性使其非常适合用于各种工业应用。

作文

In the realm of chemistry, the term supramolecule refers to a complex structure formed by the association of two or more molecules through non-covalent interactions. These interactions can include hydrogen bonds, van der Waals forces, and ionic bonds, which allow for the formation of larger assemblies that exhibit unique properties not found in individual molecules. The study of supramolecule science has gained significant attention over the past few decades due to its potential applications in various fields, including materials science, nanotechnology, and drug delivery systems.One of the most fascinating aspects of supramolecule chemistry is the ability to create structures that mimic biological systems. For instance, researchers have developed supramolecular assemblies that can replicate the functions of natural enzymes, potentially leading to breakthroughs in biocatalysis. By understanding how these molecular interactions work, scientists can design new materials with tailored properties for specific applications.Another important application of supramolecule chemistry lies in the field of drug delivery. Traditional drug delivery methods often face challenges such as poor solubility and targeted delivery. However, by utilizing supramolecular systems, researchers can encapsulate drugs within these assemblies, enhancing their solubility and allowing for controlled release. This approach not only improves the efficacy of the drugs but also minimizes side effects, making treatment safer for patients.Moreover, supramolecule structures can be engineered to respond to external stimuli, such as changes in pH or temperature. This responsiveness opens up new possibilities for creating smart materials that can adapt to their environment. For example, supramolecular hydrogels have been developed that can change their properties based on the surrounding conditions, which could be useful in various applications, from wound healing to tissue engineering.The versatility of supramolecule chemistry is further demonstrated in the development of molecular machines. These are supramolecular constructs that can perform specific tasks when triggered by an external signal. Such systems have the potential to revolutionize fields such as robotics and nanotechnology, where precise control at the molecular level is essential.In conclusion, the study of supramolecule chemistry represents a significant advancement in our understanding of molecular interactions and their applications. As researchers continue to explore the possibilities offered by supramolecular systems, we can expect to see innovative solutions to some of the most pressing challenges in science and technology. The future of supramolecule research holds great promise, paving the way for new discoveries that could transform industries and improve our quality of life.

在化学领域,术语supramolecule指的是通过非共价相互作用形成的两个或多个分子的复杂结构。这些相互作用可以包括氢键、范德华力和离子键,这些作用使得形成更大的组装体,从而展现出单个分子所没有的独特性质。近年来,supramolecule科学的研究受到了显著关注,因为它在材料科学、纳米技术和药物输送系统等多个领域的潜在应用。supramolecule化学中最令人着迷的一个方面是能够创建模仿生物系统的结构。例如,研究人员开发了能够复制天然酶功能的supramolecular组装体,这可能导致生物催化方面的突破。通过理解这些分子相互作用的工作原理,科学家们可以设计出具有特定应用所需特性的材料。另一个重要的supramolecule化学应用是在药物输送领域。传统的药物输送方法通常面临溶解度差和靶向输送等挑战。然而,通过利用supramolecular系统,研究人员可以将药物封装在这些组装体中,从而增强其溶解性并实现控制释放。这种方法不仅提高了药物的疗效,还减少了副作用,使治疗对患者更安全。此外,supramolecule结构可以被设计成对外部刺激作出反应,例如pH值或温度的变化。这种响应性为创造能够适应其环境的智能材料开辟了新的可能性。例如,已经开发出基于supramolecular的水凝胶,这些水凝胶可以根据周围条件改变其特性,这在伤口愈合和组织工程等各种应用中都可能是有用的。supramolecule化学的多功能性在分子机器的发展中得到了进一步体现。这些是supramolecular构造,可以在外部信号触发时执行特定任务。这种系统有潜力彻底改变机器人技术和纳米技术等领域,在这些领域中,分子级的精确控制至关重要。总之,supramolecule化学的研究代表了我们对分子相互作用及其应用理解的重要进展。随着研究人员继续探索supramolecular系统所提供的可能性,我们可以期待看到创新的解决方案来应对科学和技术中一些最紧迫的挑战。supramolecule研究的未来充满希望,为可能改变行业和改善我们生活质量的新发现铺平了道路。