solenoidal
简明释义
英[ˈsəʊlɪˌnɔɪdəl]美[ˌsoʊləˈnɔɪdəl]
adj. 螺线管型的
英英释义
单词用法
螺旋条件 | |
螺旋散度 | |
螺旋表示 | |
一个螺旋场是无散度的 | |
流动的螺旋性质 |
同义词
反义词
例句
1.The electron beam transverse temperature variations with anode region and acceleration tube design parameters as well as the uniform solenoidal magnetic field are presented.
给出了电子束的横向温度随电极结构和螺线管纵向磁场的变化情况。
2.The electron beam transverse temperature variations with anode region and acceleration tube design parameters as well as the uniform solenoidal magnetic field are presented.
给出了电子束的横向温度随电极结构和螺线管纵向磁场的变化情况。
3.The divergence of a solenoidal vector field is always zero.
一个涡旋型的向量场的散度总是为零。
4.The magnetic field produced by a long straight wire is not solenoidal because it does not form closed loops.
一根长直导线产生的磁场不是涡旋型的,因为它不形成闭合回路。
5.The solenoidal nature of the vector field indicates that there are no sources or sinks present.
向量场的涡旋型特性表明没有源或汇存在。
6.In fluid dynamics, the velocity field is solenoidal if it satisfies the continuity equation.
在流体动力学中,如果速度场满足连续性方程,则该速度场是涡旋型的。
7.When designing electromagnetic devices, engineers must ensure that the coils are solenoidal to achieve uniform magnetic fields.
在设计电磁设备时,工程师必须确保线圈是涡旋型的以实现均匀的磁场。
作文
In the realm of physics, particularly in electromagnetism and fluid dynamics, the term solenoidal refers to a vector field that has a divergence of zero. This characteristic is crucial in understanding how certain fields behave in various physical scenarios. For instance, when we consider the magnetic field around a magnet, it is known to be solenoidal. This means that the magnetic field lines neither converge nor diverge but instead form closed loops. Such properties are essential for ensuring that the magnetic field remains consistent and does not lead to any loss of energy, which can be a significant factor in many applications, including electrical engineering and magnetic resonance imaging (MRI).The concept of solenoidal fields extends beyond magnetism to fluid dynamics as well. In fluid mechanics, a solenoidal flow implies that the fluid is incompressible. This means that the volume of fluid elements remains constant as they move through the flow field. Understanding this property allows engineers and scientists to model fluid behavior more accurately, especially in systems where pressure variations are minimal. For example, when designing hydraulic systems or analyzing airflow over an aircraft wing, recognizing that the flow can be treated as solenoidal simplifies the calculations and enhances the predictive capabilities of the models.Moreover, the mathematical representation of solenoidal fields often involves vector calculus. A vector field is said to be solenoidal if its divergence is zero everywhere in the region of interest. Mathematically, this is expressed as ∇·V = 0, where V represents the vector field. This equation indicates that the net flow of the field out of any given volume is zero, which aligns with our earlier discussions about magnetic fields and incompressible fluids. The implications of this concept are far-reaching in both theoretical and applied physics, influencing everything from the design of electric motors to the study of atmospheric phenomena.In practical terms, understanding whether a field is solenoidal can significantly impact engineering designs and simulations. For engineers working on projects involving electromagnetic devices, recognizing the solenoidal nature of magnetic fields can lead to more efficient designs that minimize energy losses. Similarly, in civil engineering, knowing that water flow can often be treated as solenoidal allows for better drainage system designs, ensuring that water moves efficiently without causing flooding or erosion.In conclusion, the term solenoidal encapsulates an essential aspect of vector fields in physics. Whether discussing the intricacies of magnetic fields or the complexities of fluid dynamics, acknowledging the solenoidal nature of these fields provides valuable insights into their behavior and applications. As we continue to explore the depths of physics and engineering, the understanding of solenoidal fields will undoubtedly remain a cornerstone of our scientific knowledge, guiding future innovations and discoveries.
在物理学的领域,特别是在电磁学和流体动力学中,术语solenoidal指的是一个散度为零的矢量场。这一特性对于理解某些场在各种物理情境下的行为至关重要。例如,当我们考虑磁铁周围的磁场时,它被认为是solenoidal的。这意味着磁场线既不收敛也不发散,而是形成闭合的环路。这种特性对于确保磁场保持一致而不导致能量损失非常重要,这在许多应用中都是一个显著因素,包括电气工程和磁共振成像(MRI)。Solenoidal场的概念不仅限于磁性,还扩展到流体动力学。在流体力学中,solenoidal流意味着流体是不可压缩的。这意味着流体元素在流动场中移动时,其体积保持不变。理解这一特性使工程师和科学家能够更准确地建模流体行为,特别是在压力变化最小的系统中。例如,在设计液压系统或分析飞机机翼上的气流时,认识到流动可以被视为solenoidal的简化了计算,并增强了模型的预测能力。此外,solenoidal场的数学表示通常涉及向量微积分。如果一个矢量场的散度在所关注的区域内处处为零,则该矢量场被称为solenoidal。数学上,这可以表示为∇·V = 0,其中V代表矢量场。这个方程表明,给定体积内的场的净流出量为零,这与我们之前关于磁场和不可压缩流体的讨论一致。这一概念的影响在理论和应用物理中都是深远的,影响着从电动机设计到大气现象研究的一切。在实际应用中,理解一个场是否是solenoidal可以显著影响工程设计和模拟。对于从事电磁设备项目的工程师来说,认识到磁场的solenoidal特性可以导致更高效的设计,从而最小化能量损失。同样,在土木工程中,知道水流通常可以被视为solenoidal的,有助于更好的排水系统设计,确保水流动高效而不造成洪水或侵蚀。总之,术语solenoidal概括了物理学中矢量场的一个基本方面。无论是讨论磁场的复杂性还是流体动力学的复杂性,承认这些场的solenoidal特性为它们的行为和应用提供了宝贵的见解。随着我们继续探索物理学和工程学的深度,对solenoidal场的理解无疑将继续成为我们科学知识的基石,指导未来的创新和发现。