exclusion principle
简明释义
排他性原则
英英释义
例句
1.The exclusion principle helps explain why elements in the same group of the periodic table have similar chemical properties.
排斥原理有助于解释为什么周期表中同一组的元素具有相似的化学性质。
2.The exclusion principle is crucial for understanding the structure of atoms and the behavior of electrons.
排斥原理对于理解原子的结构和电子的行为至关重要。
3.In quantum mechanics, the exclusion principle refers to the idea that two identical fermions cannot occupy the same quantum state simultaneously.
在量子力学中,排斥原理指的是两个相同的费米子不能同时占据相同的量子态。
4.In a classroom, the exclusion principle can be likened to a rule that prevents two students from sitting in the same chair at the same time.
在教室里,排斥原理可以比作一条规则,防止两个学生同时坐在同一把椅子上。
5.According to the exclusion principle, no two electrons in an atom can have the same set of quantum numbers.
根据排斥原理,原子中的两个电子不能具有相同的一组量子数。
作文
The concept of the exclusion principle is fundamental in the field of quantum mechanics and has far-reaching implications in various scientific disciplines. The exclusion principle, primarily attributed to the physicist Wolfgang Pauli, states that no two fermions can occupy the same quantum state simultaneously within a quantum system. This principle is pivotal in explaining the behavior of electrons in atoms, which in turn influences the chemical properties of elements. To understand the exclusion principle, we must first delve into the nature of particles. In quantum physics, particles are classified as either fermions or bosons. Fermions, which include electrons, protons, and neutrons, obey the exclusion principle. On the other hand, bosons, such as photons, do not follow this restriction and can occupy the same state without any limitations. This distinction is crucial because it underpins the structure of matter itself.Consider the example of an atom. Electrons are arranged in various energy levels or shells around the nucleus. According to the exclusion principle, each electron in an atom must have a unique set of quantum numbers. This means that in a given atom, no two electrons can have the same energy level, orbital, spin, and other quantum characteristics. This arrangement leads to the formation of distinct electron configurations, which ultimately dictate how atoms bond with one another and form molecules.The implications of the exclusion principle extend beyond atomic structure. For instance, it plays a critical role in the stability of matter. Without the exclusion principle, electrons would collapse into the lowest energy state, resulting in a universe devoid of the complexity we observe today. The principle also explains why certain materials are conductors while others are insulators. In conductors, electrons can move freely, while in insulators, the exclusion principle keeps electrons tightly bound to their respective atoms, preventing conductivity.Furthermore, the exclusion principle has significant implications in the field of astrophysics. It is responsible for the existence of white dwarfs and neutron stars. For example, in a white dwarf, the electrons are packed so closely that the exclusion principle creates a pressure that counteracts gravitational collapse. Similarly, in neutron stars, neutrons are densely packed, and their behavior is governed by this principle, leading to incredibly high densities and unique properties.In conclusion, the exclusion principle is a cornerstone of modern physics that helps us understand the behavior of particles at a quantum level. Its influence is seen across various scientific fields, from chemistry to astrophysics, and it is essential for explaining the structure of matter and the stability of the universe. As we continue to explore the mysteries of the quantum world, the exclusion principle will undoubtedly remain a key concept that shapes our understanding of the cosmos. In summary, the exclusion principle (排斥原理) is vital for comprehending atomic structure and the interactions of particles. It ensures that no two fermions can exist in the same state, leading to the diverse and complex behaviors observed in matter, influencing everything from chemical reactions to the life cycles of stars.
排斥原理是量子力学领域的一个基本概念,对各种科学学科有着深远的影响。排斥原理主要归功于物理学家沃尔夫冈·泡利,指出在量子系统中,没有两个费米子可以同时占据相同的量子态。这个原理对于解释原子中电子的行为至关重要,而这又影响了元素的化学性质。要理解排斥原理,我们必须首先深入了解粒子的性质。在量子物理中,粒子被分为费米子和玻色子。费米子包括电子、质子和中子,遵循排斥原理。而玻色子,如光子,则不受此限制,可以不受限制地占据相同的状态。这个区别至关重要,因为它支撑着物质本身的结构。考虑一个原子的例子。电子围绕原子核排列在不同的能级或壳层中。根据排斥原理,原子中的每个电子必须具有唯一的一组量子数。这意味着在一个给定的原子中,没有两个电子可以具有相同的能级、轨道、自旋和其他量子特征。这种排列导致了独特的电子配置的形成,最终决定了原子如何相互结合并形成分子。排斥原理的影响超出了原子结构。例如,它在物质的稳定性中起着关键作用。如果没有排斥原理,电子将崩溃到最低能级,导致一个缺乏我们今天所观察到复杂性的宇宙。该原理还解释了某些材料为何是导体而其他材料为何是绝缘体。在导体中,电子可以自由移动,而在绝缘体中,排斥原理使电子紧紧束缚在各自的原子上,阻止导电性。此外,排斥原理在天体物理学领域也具有重要意义。它是白矮星和中子星存在的原因。例如,在白矮星中,电子被密集地压缩,以至于排斥原理产生的压力抵消了引力的崩溃。类似地,在中子星中,中子被密集地打包,其行为受该原理的支配,导致极高的密度和独特的性质。总之,排斥原理是现代物理学的基石,帮助我们理解粒子在量子层面的行为。它的影响在各个科学领域都可以看到,从化学到天体物理学,是解释物质结构和宇宙稳定性的基础。随着我们继续探索量子世界的奥秘,排斥原理无疑将继续作为一个关键概念,塑造我们对宇宙的理解。总之,排斥原理(exclusion principle)对于理解原子结构和粒子相互作用至关重要。它确保没有两个费米子可以处于相同状态,导致观察到的物质多样性和复杂行为,影响从化学反应到恒星生命周期的方方面面。
相关单词