thrusters
简明释义
n. [航]推进器(thruster 复数)
英英释义
Thrusters are devices or components that produce thrust to propel an object, typically used in spacecraft, submarines, and other vehicles. | 推进器是产生推力以推动物体的装置或组件,通常用于航天器、潜艇和其他车辆。 |
单词用法
火箭推进器 | |
离子推进器 | |
推力矢量推进器 | |
电动推进器 | |
主推进器 | |
辅助推进器 | |
推进器控制系统 | |
推进器的推重比 |
同义词
反义词
刹车 | 汽车的刹车被应用以减慢车辆速度。 | ||
电阻器 | 他使用电阻器来限制电路中的电流。 |
例句
1.The results show that constrictor diameters have significant influence on operating performance of the thrusters.
结果分析表明,压缩室直径对推力器性能具有较大影响。
2.Its wings are inverted, and electric thrusters keep the craft from floating to the surface.
它的机翼是反向的,电子推进器保证潜艇浮动至水面。
3.The pilot should be able to use a joystick to control small thrusters on the side of the ship.
飞行员应该能够使用操纵杆来控制船侧的小推进器。
4.The thrusters grid is one of the many key components in the influence of the thruster life.
推力器栅极部分是影响推力器寿命的主要关键部件之一。
5.After separating from the Ariane, the freighter will use its own thrusters to get to the orbiting outpost.
在与火箭分离之后,货运飞船将利用自身的助推器进入轨道位置。
6.Most use electrically driven propellers or thrusters to manoeuvre.
大多数使用电力驱动的螺旋桨和推进器进行操纵。
7.The submarine uses its thrusters to navigate underwater currents.
潜艇利用其推进器在水下潮流中导航。
8.The spacecraft's thrusters are designed to maneuver in tight spaces.
宇宙飞船的推进器旨在紧密空间内进行机动。
9.During the test flight, the engineers monitored the thrusters for any irregularities.
在测试飞行期间,工程师监测推进器是否有任何异常情况。
10.The rocket's thrusters fired at full power during launch.
火箭的推进器在发射时全力点火。
11.Astronauts can control the thrusters to adjust their position in space.
宇航员可以控制推进器来调整他们在太空中的位置。
作文
In the realm of aerospace engineering, the term thrusters refers to specialized propulsion devices that are utilized to maneuver spacecraft and satellites in space. These devices play a crucial role in the navigation and control of these vehicles, enabling them to adjust their orientation and trajectory as needed. Understanding how thrusters work is essential for anyone interested in the field of space exploration or satellite technology.The basic principle behind thrusters is Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. When a thruster expels gas or other propellant in one direction, the spacecraft moves in the opposite direction. This principle allows for precise control over the movement of the spacecraft, which is especially important when making delicate maneuvers in the vacuum of space.There are various types of thrusters, each designed for specific applications. For instance, chemical thrusters use propellants that undergo combustion to produce thrust. These are commonly found in launch vehicles and are capable of generating significant amounts of force. On the other hand, electric thrusters, such as ion or Hall-effect thrusters, use electric fields to accelerate ions, providing a much more efficient means of propulsion, albeit with lower thrust levels.One of the most fascinating aspects of thrusters is their application in deep space missions. For example, NASA's Dawn spacecraft utilized ion thrusters to travel to the asteroid belt and study the dwarf planet Ceres. The efficiency of the ion thrusters allowed the spacecraft to carry less propellant, enabling it to conduct a longer mission while still maintaining the ability to maneuver effectively.Furthermore, thrusters are not only limited to large spacecraft; they are also crucial for smaller satellites. These tiny devices often rely on thrusters to maintain their orbits and perform station-keeping maneuvers. Without thrusters, satellites would drift off course, leading to potential collisions with other objects in space.In summary, thrusters are vital components in the field of aerospace engineering, enabling spacecraft to navigate the vastness of space with precision and control. Whether through chemical reactions or electric propulsion, these devices exemplify the application of fundamental physics principles to solve complex challenges in space exploration. As technology continues to evolve, the design and efficiency of thrusters will likely improve, paving the way for even more ambitious missions beyond our planet.In conclusion, understanding thrusters and their function is essential for anyone interested in the future of space travel and exploration. Their ability to provide controlled propulsion makes them indispensable tools for both current and future missions, highlighting the importance of ongoing research and development in this exciting field.
在航空航天工程领域,术语thrusters指的是用于在太空中操控航天器和卫星的专用推进装置。这些装置在这些飞行器的导航和控制中发挥着至关重要的作用,使它们能够根据需要调整其方向和轨迹。理解thrusters的工作原理对于任何对太空探索或卫星技术感兴趣的人来说都是必不可少的。thrusters的基本原理是牛顿第三运动定律,即每个作用都有相等且相反的反应。当一个thruster向一个方向排出气体或其他推进剂时,航天器便会朝相反的方向移动。这个原理使得航天器的运动可以被精确控制,这在太空中的微妙机动中尤为重要。有多种类型的thrusters,每种都设计用于特定的应用。例如,化学thrusters使用经过燃烧的推进剂来产生推力。这些通常出现在发射载具中,能够产生显著的力量。另一方面,电动thrusters,如离子或霍尔效应thrusters,使用电场加速离子,提供一种更高效的推进方式,尽管推力水平较低。thrusters最迷人的方面之一是它们在深空任务中的应用。例如,NASA的“黎明号”航天器利用离子thrusters前往小行星带并研究矮行星谷神星。离子thrusters的高效性使得航天器能够携带更少的推进剂,从而使其能够进行更长的任务,同时仍保持有效的机动能力。此外,thrusters不仅限于大型航天器;它们对较小的卫星也至关重要。这些微型设备通常依赖于thrusters来维持其轨道和执行保持位置的机动。如果没有thrusters,卫星将会偏离轨道,导致与太空中其他物体发生潜在碰撞。总之,thrusters是航空航天工程领域的重要组成部分,使航天器能够以精确和控制的方式在浩瀚的太空中导航。无论是通过化学反应还是电推进,这些设备都体现了基础物理原理在解决复杂的太空探索挑战中的应用。随着技术的不断发展,thrusters的设计和效率可能会得到改善,为我们超越地球的更雄心勃勃的任务铺平道路。最后,理解thrusters及其功能对于任何对未来太空旅行和探索感兴趣的人来说都是必不可少的。它们提供受控推进的能力使其成为当前和未来任务不可或缺的工具,强调了在这一激动人心的领域中持续研究和发展的重要性。