homologize
简明释义
英[hɒˈmɒlədʒaɪz]美[həˈmɑːləˌdʒaɪz]
vi. 相应
vt. 使相应;使对应
第 三 人 称 单 数 h o m o l o g i z e s
现 在 分 词 h o m o l o g i z i n g
过 去 式 h o m o l o g i z e d
过 去 分 词 h o m o l o g i z e d
英英释义
单词用法
同源化基因 | |
同源化结构 | |
同源化物种 | |
与...同源化 | |
跨物种同源化 | |
同源化进化特征 |
同义词
反义词
例句
1.The main objective of this paper is that using three models to obtain the homologize pricing of derivative security.
本文的目标是通过三个模型,得到其相应的衍生证券的定价公式。
2.A person's arms homologize with a quadruped's forelimbs.
人的胳膊与四肢动物的前肢相应。
3.The main objective of this paper is that using three models to obtain the homologize pricing of derivative security.
本文的目标是通过三个模型,得到其相应的衍生证券的定价公式。
4.In evolutionary biology, researchers often seek to homologize traits across different species to understand their common ancestry.
在进化生物学中,研究人员经常试图同源化不同物种的特征,以理解它们的共同祖先。
5.The team used genetic data to homologize the genes of fruit flies and humans to find similarities.
团队利用基因数据来同源化果蝇和人类的基因,以寻找相似之处。
6.When comparing proteins, scientists often homologize sequences to identify functional similarities.
在比较蛋白质时,科学家们通常会同源化序列以识别功能相似性。
7.To better understand the function of a gene, researchers may homologize it with known genes in model organisms.
为了更好地理解基因的功能,研究人员可能会将其与模式生物中的已知基因同源化。
8.The study aimed to homologize the developmental processes of various amphibians.
这项研究旨在同源化各种两栖动物的发育过程。
作文
In the field of biology, the concept of homologous structures is crucial for understanding evolutionary relationships among different species. When scientists study the anatomy of various organisms, they often find similarities that suggest a common ancestry. For instance, the forelimbs of humans, whales, and bats have distinct functions but share a similar underlying bone structure. This similarity allows biologists to homologize these limbs, meaning they can identify them as homologous structures due to their shared evolutionary origin. By doing so, researchers can trace back the lineage of these species and gain insights into how evolution has shaped their development over millions of years.The process of homologizing structures not only aids in classification but also enhances our understanding of adaptive evolution. When species evolve in different environments, they may develop unique adaptations while retaining fundamental anatomical features. This phenomenon illustrates the principle of descent with modification, where the core design remains intact, but the function diverges based on ecological demands. For example, the wings of birds and insects serve the same purpose—flight—but their structures are quite different. Birds have feathers and a skeletal framework, while insects possess a chitinous exoskeleton. In this case, scientists would not homologize these wings because they evolved independently, despite serving the same function.Moreover, the ability to homologize traits extends beyond physical structures to molecular and genetic levels. Geneticists utilize comparative genomics to identify conserved genes across species. These genes can provide clues about evolutionary processes and help scientists understand diseases that affect multiple organisms. For instance, if a gene associated with a particular disease is found to be conserved in both mice and humans, researchers can homologize this gene to study its effects in both species, ultimately leading to advancements in medical research.However, the practice of homologizing is not without its challenges. As new species are discovered and genetic data becomes more complex, determining which traits are truly homologous can be contentious. Some structures may appear similar due to convergent evolution, where unrelated species develop analogous traits as a response to similar environmental pressures. This makes it essential for scientists to carefully analyze data and consider phylogenetic relationships when attempting to homologize traits.In conclusion, the ability to homologize structures and genes is a powerful tool in the biological sciences. It allows researchers to piece together the puzzle of evolution, revealing the intricate connections between diverse life forms. By understanding these relationships, we can appreciate the beauty of biodiversity and the processes that have shaped life on Earth. As science continues to advance, the methods used to homologize will evolve, providing deeper insights into the history of life and the mechanisms driving change. Ultimately, the study of homologous traits enriches our knowledge of biology and underscores the shared heritage of all living organisms.
在生物学领域,同源结构的概念对于理解不同物种之间的进化关系至关重要。当科学家研究各种生物的解剖结构时,他们常常发现相似性,这表明它们有共同的祖先。例如,人类、鲸鱼和蝙蝠的前肢具有不同的功能,但共享相似的基础骨骼结构。这种相似性使生物学家能够homologize这些肢体,意味着他们可以将其识别为同源结构,因为它们有共同的进化起源。通过这样做,研究人员可以追溯这些物种的谱系,并深入了解数百万年来进化如何塑造它们的发展。homologizing结构的过程不仅有助于分类,还增强了我们对适应性进化的理解。当物种在不同的环境中进化时,它们可能会发展出独特的适应性,同时保留基本的解剖特征。这一现象说明了带有修饰的后代原则,其中核心设计保持不变,但根据生态需求发生分歧。例如,鸟类和昆虫的翅膀服务于相同的目的——飞行——但它们的结构截然不同。鸟类有羽毛和骨骼框架,而昆虫则具有几丁质外骨骼。在这种情况下,科学家不会homologize这些翅膀,因为它们是独立进化的,尽管服务于相同的功能。此外,homologize特征的能力延伸到分子和基因层面。遗传学家利用比较基因组学来识别跨物种保守基因。这些基因可以提供有关进化过程的线索,并帮助科学家理解影响多种生物的疾病。例如,如果发现与特定疾病相关的基因在小鼠和人类中都是保守的,研究人员可以homologize这个基因,以研究它在这两种物种中的作用,最终推动医学研究的发展。然而,homologizing的实践并非没有挑战。随着新物种的发现和基因数据的复杂性增加,确定哪些特征是真正同源的可能会引发争议。一些结构可能由于趋同进化而看起来相似,即无关物种作为对类似环境压力的响应而发展出类似特征。这使得科学家在试图homologize特征时必须仔细分析数据并考虑系统发育关系。总之,homologize结构和基因的能力是生物科学中的一种强大工具。它使研究人员能够拼凑出进化的拼图,揭示不同生命形式之间的复杂联系。通过理解这些关系,我们可以欣赏生物多样性的美丽以及塑造地球生命的过程。随着科学的不断进步,用于homologize的方法将不断演变,为我们提供更深入的生命历史和驱动变化机制的见解。最终,对同源特征的研究丰富了我们对生物学的知识,并强调了所有生物体的共同遗产。