radiosonde

简明释义

[ˈreɪdɪəʊˌsɒnd][ˈreɪdɪoʊˌsɑːnd]

n. [航][气象] 无线电探空仪;[气象][测] 无线电高空测候器

英英释义

A radiosonde is a small, lightweight instrument carried aloft by a helium or hydrogen balloon to measure atmospheric parameters such as temperature, humidity, and pressure at various altitudes.

无线电探空仪是一种小型轻便的仪器,通过氦气或氢气气球携带到高空,以测量不同高度的气温、湿度和气压等大气参数。

单词用法

weather balloon with a radiosonde

带有气象探空仪的气象气球

radiosonde data

气象探空仪数据

launch a radiosonde

发射气象探空仪

retrieve radiosonde

回收气象探空仪

同义词

weather balloon

气象气球

The weather balloon was launched to collect upper-atmosphere data.

气象气球被发射以收集高层大气数据。

meteorological probe

气象探测器

The meteorological probe provided valuable information for the weather forecast.

气象探测器为天气预报提供了宝贵的信息。

反义词

radiosilence

无线电静默

The radiosilence during the storm made it difficult to receive weather updates.

暴风雨期间的无线电静默使得接收天气更新变得困难。

ground station

地面站

The ground station is responsible for receiving data from the satellites.

地面站负责接收来自卫星的数据。

例句

1.And atmospheric water vapor distribution and change are studied synthetically based on GPS, radiosonde and other ground weather observations data over Tibet Plateau and around area.

利用GPS探测结果、探空资料和气象站常规地面观测资料反演了青藏高原及其周边地区的大气总水汽量。

2.Comparisons of the results with radiosonde data show that retrieved, moisture profiles basically agree with radiosonde data.

比较结果表明,卫星反演水汽廓线与常规探测水汽廓线基本吻合。

3.The reliable verification of GPS-meteorology has been studied with the comparisons of GPS Zenith wet delay and water vapor radiometer, GPS precipitable water vapor and radiosonde.

本文通过对GPS湿延迟和水汽辐射计、GPS可降水量与无线电探空资料的比较,进行了GPS气象可靠性检核研究。

4.A set of radiosonde data is numerically inverted. Several factors that influence the inversion accuracy, and the limitation of remote sensing of water vap...

对一系列的探空资料进行了模拟反演,讨论了影响反演精度的几个因子以及微波空对地遥感水汽分布的局限性。

5.The pressure sensor is one of the core components in radiosonde. There are still some deficiencies in traditional silicon piezoresistive sensors.

气压传感器是探空仪中的核心部件之一,传统的硅压阻传感器应用于探空仪中还存在着一些不足。

6.A radiosonde is free to rise to as great an elevation as possible.

无线电探空仪可以自由地上升到尽可能高的高度。

7.The effective range of linearized equation is examined. A set of radiosonde data is numerically inverted. Several factors that influence the inversion accuracy, and the…

对一系列的探空资料进行了模拟反演,讨论了影响反演精度的几个因子以及微波空对地遥感水汽分布的局限性。

8.The data from the radiosonde helped improve the accuracy of weather forecasts.

来自无线电探空仪的数据帮助提高了天气预报的准确性。

9.Researchers used radiosondes to study the vertical profile of the atmosphere.

研究人员使用无线电探空仪来研究大气的垂直剖面。

10.The meteorologist launched a radiosonde to collect data on temperature and humidity at different altitudes.

气象学家发射了一个无线电探空仪以收集不同高度的温度和湿度数据。

11.During the storm, several radiosondes were deployed to monitor atmospheric conditions.

在暴风雨期间,多个无线电探空仪被部署以监测大气条件。

12.A radiosonde is typically attached to a weather balloon before it is released.

在释放之前,无线电探空仪通常会附在一个气象气球上。

作文

The term radiosonde refers to a small, lightweight instrument that is used to measure various atmospheric parameters such as temperature, humidity, pressure, and wind speed at different altitudes. These instruments are typically carried aloft by a weather balloon and transmit data back to the ground station in real-time. The use of radiosondes has become an essential part of meteorological practices around the world, providing critical information for weather forecasting and climate studies.The history of the radiosonde dates back to the early 20th century when scientists began exploring the upper layers of the atmosphere. Prior to the development of radiosondes, weather observations were limited to surface measurements. However, with the advent of this technology, meteorologists could collect data from higher altitudes, leading to a more comprehensive understanding of atmospheric conditions.One of the key advantages of using a radiosonde is its ability to provide vertical profiles of the atmosphere. This means that it can capture how temperature, humidity, and other factors change with altitude. Such information is crucial for predicting weather patterns, as many meteorological phenomena occur in the upper atmosphere. For instance, the formation of thunderstorms, hurricanes, and other severe weather events can be better understood through the data collected by radiosondes.In a typical weather balloon launch, a radiosonde is attached to a helium or hydrogen-filled balloon. As the balloon ascends, the radiosonde continuously measures atmospheric conditions and sends this data back to a receiving station on the ground via radio waves. The ascent can reach altitudes of up to 30 kilometers (approximately 18.6 miles), allowing for extensive data collection. Once the balloon reaches its maximum altitude, it bursts, and the radiosonde descends back to the Earth's surface, usually with the help of a parachute.The data gathered by radiosondes is vital for numerical weather prediction models, which are used by meteorologists to forecast the weather. These models rely on accurate initial conditions to produce reliable forecasts, and the information provided by radiosondes plays a crucial role in establishing those conditions. Without this data, weather predictions would be less accurate, potentially leading to severe consequences in terms of disaster preparedness and response.Moreover, radiosondes are not only valuable for daily weather forecasting but also for climate research. By collecting long-term data on atmospheric conditions, scientists can study trends and changes in the climate system. This information is essential for understanding global warming, climate variability, and other significant environmental changes.In conclusion, the radiosonde is an indispensable tool in modern meteorology. Its ability to provide detailed atmospheric data from various altitudes enables scientists and meteorologists to improve weather forecasts and advance our understanding of climate dynamics. As technology continues to evolve, the role of radiosondes will likely expand, further enhancing our capacity to monitor and respond to atmospheric changes, ultimately contributing to better preparedness for weather-related disasters.

术语radiosonde指的是一种小型、轻便的仪器,用于测量各种大气参数,如温度、湿度、压力和不同高度的风速。这些仪器通常由气象气球携带,并实时将数据传回地面站。使用radiosondes已成为全球气象实践的重要组成部分,为天气预报和气候研究提供了关键的信息。radiosonde的历史可以追溯到20世纪初,当时科学家们开始探索大气的上层。在radiosondes技术发展之前,天气观测仅限于地面测量。然而,随着这一技术的出现,气象学家能够从更高的高度收集数据,从而对大气条件有了更全面的理解。使用radiosonde的一个主要优点是它能够提供大气的垂直剖面。这意味着它可以捕捉温度、湿度和其他因素随高度变化的情况。这些信息对预测天气模式至关重要,因为许多气象现象发生在高层大气中。例如,通过radiosondes收集的数据,可以更好地理解雷暴、飓风和其他极端天气事件的形成。在典型的气象气球发射中,一台radiosonde被附加到充满氦气或氢气的气球上。当气球上升时,radiosonde不断测量大气条件,并通过无线电波将这些数据发送回地面接收站。上升高度可达到30公里(约18.6英里),允许广泛的数据收集。一旦气球达到最大高度,就会破裂,radiosonde通常借助降落伞降回地球表面。由radiosondes收集的数据对于数值天气预报模型至关重要,这些模型被气象学家用来预测天气。这些模型依赖于准确的初始条件来产生可靠的预报,而radiosondes提供的信息在建立这些条件中起着关键作用。如果没有这些数据,天气预测的准确性将降低,可能导致在灾害准备和应对方面的严重后果。此外,radiosondes不仅对日常天气预报有价值,而且对气候研究也非常重要。通过收集长期的大气条件数据,科学家可以研究趋势和气候系统的变化。这些信息对于理解全球变暖、气候变异性和其他重大环境变化至关重要。总之,radiosonde是现代气象学中不可或缺的工具。它能够提供来自不同高度的详细大气数据,使科学家和气象学家能够改善天气预报并推进我们对气候动态的理解。随着技术的不断发展,radiosondes的作用可能会进一步扩大,从而增强我们监测和应对大气变化的能力,最终有助于更好地为天气相关灾害做好准备。