spectrography
简明释义
英[ˌspɛktrəˈɡrɑːfi]美[ˌspɛktrəˈɡræfɪ]
n. [光] 摄谱学;[光] 光谱学
英英释义
单词用法
质谱分析法;质谱仪 |
同义词
光谱学 | Spectroscopy is widely used in chemistry to identify substances. | 光谱学广泛应用于化学中以识别物质。 | |
光谱分析 | Spectral analysis can help determine the composition of stars. | 光谱分析可以帮助确定恒星的成分。 |
反义词
非光谱分析 | Non-spectral analysis techniques are often used in chemical testing. | 非光谱分析技术常用于化学测试。 | |
定性评估 | Qualitative assessment can provide insights without detailed spectral data. | 定性评估可以在没有详细光谱数据的情况下提供见解。 |
例句
1.To investigate the possibility of early diagnosis of the cerebral infarction using MRI and near infra red spectrography (NIRS) in the animal models of the cerebral infarction.
在大鼠实验性脑梗塞模型上,应用MRI灰阶定量以及近红外光谱方法探讨脑梗塞早期诊断的可能性。
2.The present paper deals with the development of the interference coefficient method for correcting the spectral interferences in the analysis of high purity Dy_2O_3 with ICP-AES spectrography.
本文建立了高纯氧化镝样品ICP摄谱分析时干扰系数法校正光谱干扰的方法。
3.The present paper deals with the development of the interference coefficient method for correcting the spectral interferences in the analysis of high purity Dy_2O_3 with ICP-AES spectrography.
本文建立了高纯氧化镝样品ICP摄谱分析时干扰系数法校正光谱干扰的方法。
4.The new instrument is appropriate for USES in spectrometric quantitative analysis and study, and for spectrography teaching.
此仪器适用于光谱定量分析、光谱分析研究和光谱教学。
5.Structute of nitrogen heterocyclic ring quaternary ammonium salt cationic surfactants was identi fied by mass spectrography, nuclear magnetic resonance spectra, infrared spectra and etc.
用质谱法、核磁共振波谱法、红外光谱法等,确定了未知氮杂环季铵盐型阳离子表面活性剂的结构。
6.On the basis of the practice, the distinguishing features and the correlation of ferrography and spectrography in the condition monitoring are also discussed.
并结合监测实际,对铁谱光谱的特性和对应关系进行了讨论。
7.The astronomers used spectrography to analyze the light emitted from distant stars.
天文学家使用光谱摄影分析来自遥远恒星的光。
8.The environmental scientists utilized spectrography to monitor air quality and pollution levels.
环境科学家利用光谱摄影监测空气质量和污染水平。
9.By using spectrography, researchers can study the chemical makeup of ancient artifacts.
通过使用光谱摄影,研究人员可以研究古代文物的化学成分。
10.The forensic team employed spectrography to detect traces of substances at the crime scene.
法医团队采用光谱摄影来检测犯罪现场的物质痕迹。
11.In chemistry, spectrography helps identify the composition of substances by examining their spectral lines.
在化学中,光谱摄影通过检查物质的光谱线来帮助识别其成分。
作文
Spectrography is a powerful analytical technique that allows scientists to study the interaction of light with matter. By dispersing light into its component wavelengths, spectrography enables researchers to gain insights into the composition and properties of various substances. This method has been instrumental in fields such as chemistry, astronomy, and environmental science. For instance, in chemistry, the use of spectrography (光谱法) helps in identifying the molecular structure of compounds by analyzing the absorption and emission spectra. Each element emits and absorbs light at specific wavelengths, creating a unique 'fingerprint' that can be detected and measured.In astronomy, spectrography (光谱法) plays a crucial role in understanding the universe. Astronomers use this technique to analyze the light from stars and galaxies, allowing them to determine their chemical composition, temperature, density, and motion. This information is vital for constructing models of stellar evolution and understanding the dynamics of celestial bodies. For example, the Doppler effect observed in the spectral lines of distant stars can indicate whether they are moving towards or away from Earth, providing valuable data about the expansion of the universe.Environmental scientists also rely on spectrography (光谱法) to monitor pollutants in the air and water. By measuring the spectral signatures of various contaminants, researchers can assess the health of ecosystems and track changes over time. This application is particularly important in the context of climate change and pollution control, as it provides essential data for policymakers and conservationists.The advancements in technology have greatly enhanced the capabilities of spectrography (光谱法). Modern spectrographs are equipped with sensitive detectors and sophisticated software that allow for real-time analysis and high-resolution measurements. This has led to the development of portable spectrometers that can be used in the field, making it easier for scientists to collect data in remote locations.In conclusion, spectrography (光谱法) is an invaluable tool across multiple scientific disciplines. Its ability to analyze light interactions provides critical information about the composition and behavior of materials, from the smallest molecules to the vastness of space. As technology continues to evolve, the applications of spectrography (光谱法) will expand, leading to new discoveries and a deeper understanding of the world around us.
光谱法是一种强大的分析技术,允许科学家研究光与物质的相互作用。通过将光分散成其组成波长,光谱法使研究人员能够深入了解各种物质的成分和性质。这种方法在化学、天文学和环境科学等领域发挥了重要作用。例如,在化学中,使用光谱法帮助识别化合物的分子结构,通过分析吸收和发射光谱。每种元素在特定波长下发射和吸收光,形成独特的“指纹”,可以被检测和测量。在天文学中,光谱法在理解宇宙方面发挥着关键作用。天文学家利用这一技术分析来自恒星和星系的光,使他们能够确定其化学成分、温度、密度和运动。这些信息对构建恒星演化模型和理解天体的动态至关重要。例如,在遥远恒星的光谱线中观察到的多普勒效应可以表明它们是朝向地球移动还是远离地球,这为宇宙膨胀提供了宝贵的数据。环境科学家也依赖于光谱法来监测空气和水中的污染物。通过测量各种污染物的光谱特征,研究人员可以评估生态系统的健康状况并跟踪变化。这一应用在气候变化和污染控制的背景下尤为重要,因为它为政策制定者和保护主义者提供了必要的数据。技术的进步大大增强了光谱法的能力。现代光谱仪配备了灵敏的探测器和复杂的软件,可以进行实时分析和高分辨率测量。这导致了便携式光谱仪的发展,可以在现场使用,使科学家更容易在偏远地区收集数据。总之,光谱法是多个科学学科中不可或缺的工具。它分析光相互作用的能力提供了关于材料成分和行为的关键信息,从最小的分子到浩瀚的空间。随着技术的不断发展,光谱法的应用将不断扩展,带来新的发现,以及对我们周围世界的更深理解。