stellarator
简明释义
英[ˈsteləˌreɪtə(r)]美[ˈsteləˌreɪtər]
n. [等离子] 仿星器
英英释义
A stellarator is a type of nuclear fusion reactor that uses magnetic fields to confine plasma in a twisted, helical shape. | 斯特拉托尔是一种核聚变反应堆,利用磁场将等离子体限制在扭曲的螺旋形状中。 |
单词用法
斯特拉拉托设计 | |
斯特拉拉托技术 | |
操作斯特拉拉托 | |
建造斯特拉拉托 |
同义词
反义词
托卡马克 | The tokamak is a widely used design for magnetic confinement fusion. | 托卡马克是一种广泛使用的磁约束聚变设计。 | |
线性装置 | Linear devices are simpler in design compared to stellarators. | 与星际器相比,线性装置的设计更简单。 |
例句
1.A stellarator therefore needs only one magnetic field to manage the plasma, and can be run indefinitely rather than just for a few minutes.
由于它只需要一个磁场来控制等离子体,所以,其运行的时间可以无限长,而不仅仅是几十分钟。
2.A stellarator therefore needs only one magnetic field to manage the plasma, and can be run indefinitely rather than just for a few minutes.
由于它只需要一个磁场来控制等离子体,所以,其运行的时间可以无限长,而不仅仅是几十分钟。
3.The research team is studying the efficiency of the new stellarator 恒星器 design for plasma confinement.
研究团队正在研究新型恒星器 恒星器设计在等离子体约束方面的效率。
4.In contrast to tokamaks, stellarators 恒星器 do not require a large current to be driven through the plasma.
与托卡马克相比,恒星器 恒星器不需要通过等离子体驱动大电流。
5.Scientists at the fusion lab are excited about the advancements in stellarators 恒星器 that could lead to sustainable energy.
融合实验室的科学家们对恒星器 恒星器的进展感到兴奋,这可能会导致可持续能源的实现。
6.The stellarator 恒星器 operates by twisting magnetic fields to confine hot plasma.
该恒星器 恒星器通过扭曲磁场来约束高温等离子体。
7.The latest generation of stellarators 恒星器 has improved stability and confinement times.
最新一代的恒星器 恒星器具有更好的稳定性和约束时间。
作文
The quest for sustainable and clean energy sources has led scientists to explore various methods of harnessing nuclear fusion. Among these methods, the stellarator stands out as a promising approach. A stellarator is a type of magnetic confinement device used to contain hot plasma in order to achieve the conditions necessary for nuclear fusion. Unlike other devices such as tokamaks, which rely on a combination of magnetic fields generated by external coils and the plasma current, the stellarator uses twisted magnetic fields created by its own coils. This unique design allows for continuous operation without the need for large electrical currents, reducing the risk of instabilities that can disrupt the fusion process.One of the main advantages of the stellarator is its ability to maintain stable plasma confinement over long periods of time. This stability is crucial for achieving the high temperatures and pressures required for fusion reactions to occur. In a typical fusion reaction, hydrogen isotopes are heated to millions of degrees, causing them to collide and fuse together, releasing vast amounts of energy in the process. The stellarator aims to replicate this process safely and efficiently, making it a vital area of research in the field of nuclear fusion.The development of the stellarator dates back to the 1950s, with significant advancements made in the following decades. Researchers have worked tirelessly to improve the design and functionality of stellarators, leading to several experimental models around the world. One of the most notable examples is the Wendelstein 7-X, located in Germany, which is currently the largest operational stellarator. It serves as a testbed for exploring the physics of plasma behavior and confinement in a stellarator configuration.Despite its potential, the stellarator is not without challenges. The complexity of its design makes construction and maintenance more difficult compared to simpler devices like tokamaks. Additionally, achieving the optimal magnetic field configuration to ensure effective plasma confinement requires advanced computational modeling and engineering precision. Nevertheless, researchers remain optimistic about the future of stellarators as they continue to refine their designs and improve their performance.As the world grapples with the pressing need for clean energy solutions, the stellarator represents a beacon of hope. If successful, it could provide a nearly limitless source of energy, significantly reducing our dependence on fossil fuels and mitigating the impacts of climate change. The ongoing research into stellarators not only holds promise for energy production but also contributes to our understanding of fundamental physics. Each breakthrough brings us one step closer to realizing the dream of harnessing the power of the stars here on Earth.In conclusion, the stellarator is a fascinating and complex device that embodies the cutting-edge of nuclear fusion research. Its unique design and potential for stable plasma confinement make it an exciting area of study for scientists and engineers alike. As we continue to face global energy challenges, the pursuit of viable fusion technologies like the stellarator could play a crucial role in shaping a sustainable energy future for generations to come.
对可持续和清洁能源来源的探索使科学家们研究各种利用核聚变的方法。在这些方法中,stellarator作为一种有前景的方法脱颖而出。stellarator是一种磁约束装置,用于包含高温等离子体,以实现核聚变所需的条件。与依赖外部线圈产生的磁场和等离子体电流的其他装置(如托卡马克)不同,stellarator使用自身线圈产生的扭曲磁场。这种独特的设计允许连续运行,而无需大电流,从而降低了破坏聚变过程的失稳风险。stellarator的主要优势之一是能够在较长时间内保持稳定的等离子体约束。这种稳定性对于实现聚变反应所需的高温和高压至关重要。在典型的聚变反应中,氢同位素被加热到数百万度,使它们碰撞并融合在一起,从而释放出巨大的能量。stellarator旨在安全高效地复制这一过程,使其成为核聚变领域的重要研究方向。stellarator的发展可以追溯到20世纪50年代,随后几十年取得了重大进展。研究人员不懈努力,改善stellarator的设计和功能,导致全球多个实验模型的出现。其中最著名的例子之一是位于德国的温德尔施泰因7-X,它目前是最大的可操作stellarator。它作为一个测试平台,用于探索stellarator配置中等离子体行为和约束的物理学。尽管具有潜力,但stellarator也面临挑战。其设计的复杂性使得与更简单的设备(如托卡马克)相比,建造和维护更为困难。此外,实现最佳的磁场配置以确保有效的等离子体约束需要先进的计算建模和工程精度。尽管如此,研究人员对stellarator的未来仍持乐观态度,他们继续改进设计,提高性能。随着世界面临对清洁能源解决方案的迫切需求,stellarator代表了一线希望。如果成功,它可能提供几乎无限的能源,大大减少我们对化石燃料的依赖,并减轻气候变化的影响。对stellarator的持续研究不仅对能源生产具有希望,还促进了我们对基本物理学的理解。每一次突破都使我们更接近于实现将星星的力量在地球上利用的梦想。总之,stellarator是一个迷人而复杂的装置,体现了核聚变研究的前沿。其独特的设计和稳定的等离子体约束潜力使其成为科学家和工程师激动人心的研究领域。随着我们继续面临全球能源挑战,像stellarator这样的可行聚变技术的追求可能在塑造可持续能源未来方面发挥至关重要的作用。