triangular array
简明释义
三角形阵列
英英释义
例句
1.In mathematics, a triangular array 三角阵列 is often used to illustrate the concept of combinations.
在数学中,triangular array 三角阵列 常用于说明组合的概念。
2.In computer graphics, a triangular array 三角阵列 can be used to create complex shapes and models.
在计算机图形学中,triangular array 三角阵列 可用于创建复杂的形状和模型。
3.The data points were plotted in a triangular array 三角阵列 to analyze their distribution visually.
数据点被绘制成 triangular array 三角阵列 以便直观分析它们的分布。
4.When organizing the books on the shelf, I arranged them in a triangular array 三角阵列 for a more aesthetic look.
在整理书架上的书籍时,我将它们排列成 triangular array 三角阵列 以获得更美观的外观。
5.The seating arrangement for the wedding was designed in a triangular array 三角阵列 to maximize space and visibility.
婚礼的座位安排设计成 triangular array 三角阵列 以最大化空间和可见性。
作文
In mathematics, the concept of a triangular array is often used to illustrate various numerical patterns and relationships. A triangular array is an arrangement of numbers or objects in the shape of a triangle, where each row contains one more element than the previous row. This structure makes it particularly useful for visualizing certain mathematical concepts, such as combinations, binomial coefficients, and Pascal's Triangle. To understand the significance of a triangular array, consider Pascal's Triangle, which is a famous example of this arrangement. Each number in Pascal's Triangle is the sum of the two numbers directly above it. This simple rule leads to fascinating properties and applications in algebra, probability, and combinatorics. For instance, the nth row of Pascal's Triangle corresponds to the coefficients of the binomial expansion of (a + b)^n. By examining the triangular array formed by these coefficients, one can derive important formulas and relationships that are fundamental to higher mathematics.Moreover, triangular arrays can also be found in various real-world contexts. For example, when organizing seating arrangements for events, one might use a triangular array to maximize space and provide a clear view for all attendees. In computer science, algorithms that utilize triangular arrays are often more efficient in terms of both time and space complexity. The beauty of a triangular array lies not only in its mathematical elegance but also in its versatility across different fields. In art and design, triangular patterns can create visually appealing compositions, while in nature, we find triangular formations in the arrangement of leaves or petals. This geometric configuration is not just limited to abstract concepts but is deeply rooted in our everyday experiences.In conclusion, the triangular array serves as a powerful tool for understanding and exploring mathematical ideas. Its applications extend beyond pure mathematics into various disciplines, demonstrating the interconnectedness of knowledge. By studying triangular arrays, students and scholars can develop a deeper appreciation for the patterns that govern both the abstract world of numbers and the tangible reality around us. The next time you encounter a triangular array, whether in a classroom or in nature, take a moment to reflect on the beauty and utility of this remarkable structure.
在数学中,三角数组的概念常用于说明各种数字模式和关系。三角数组是以三角形的形状排列的数字或物体,其中每一行包含比前一行多一个元素。这种结构使其特别适合于可视化某些数学概念,例如组合、二项式系数和帕斯卡三角形。要理解三角数组的重要性,可以考虑帕斯卡三角形,这是这种排列的著名例子。帕斯卡三角形中的每个数字都是直接在其上方的两个数字之和。这条简单的规则导致了迷人的属性和在代数、概率和组合学中的应用。例如,帕斯卡三角形的第n行对应于(a + b)^n的二项式展开的系数。通过检查由这些系数组成的三角数组,人们可以推导出对高等数学至关重要的重要公式和关系。此外,三角数组也可以在各种现实世界的背景中找到。例如,在为活动组织座位安排时,人们可能会使用三角数组来最大化空间并为所有与会者提供清晰的视野。在计算机科学中,利用三角数组的算法通常在时间和空间复杂性方面更有效。三角数组的美不仅在于其数学优雅,还在于其在不同领域的多样性。在艺术和设计中,三角形图案可以创造出视觉上令人愉悦的构图,而在自然界中,我们发现三角形结构存在于叶子或花瓣的排列中。这种几何配置不仅限于抽象概念,而是深深植根于我们的日常体验中。总之,三角数组作为理解和探索数学思想的强大工具。它的应用超越了纯数学,延伸到各个学科,展示了知识的相互联系。通过研究三角数组,学生和学者可以更深入地欣赏支配抽象数字世界与我们周围有形现实之间的模式。下次当你遇到三角数组时,无论是在课堂上还是在自然中,请花一点时间反思这一非凡结构的美丽和实用性。
相关单词