turbulent scattering

简明释义

湍流散射

英英释义

Turbulent scattering refers to the diffusion of particles or waves caused by irregular and chaotic fluid motion, which can affect the propagation and interaction of light, sound, or other forms of energy.

湍流散射是指由于不规则和混乱的流体运动导致的粒子或波的扩散,这可以影响光、声或其他能量形式的传播和相互作用。

例句

1.Engineers need to account for 湍流散射 when designing aircraft for optimal performance.

工程师在设计飞机以获得最佳性能时需要考虑湍流散射

2.The researchers studied the effects of 湍流散射 on light propagation in atmospheric conditions.

研究人员研究了湍流散射对光在大气条件下传播的影响。

3.The simulation demonstrated how 湍流散射 alters the behavior of sound waves.

模拟展示了湍流散射如何改变声波的行为。

4.The study revealed that 湍流散射 increases the uncertainty in radar measurements.

研究表明,湍流散射增加了雷达测量的不确定性。

5.In fluid dynamics, 湍流散射 can significantly affect particle dispersion.

在流体动力学中,湍流散射可以显著影响颗粒的扩散。

作文

In the field of physics, particularly in fluid dynamics and optics, the term turbulent scattering refers to the complex interaction of light or other waves with a medium that is in a state of turbulence. This phenomenon occurs when a fluid's flow becomes chaotic, leading to unpredictable patterns of movement. Understanding turbulent scattering is essential for various applications, including meteorology, oceanography, and even telecommunications. Turbulence can be defined as a flow regime characterized by chaotic changes in pressure and flow velocity. When light travels through a turbulent medium, such as air or water, it encounters numerous particles and irregularities that scatter the light in different directions. This scattering can significantly affect visibility and the propagation of signals. For instance, when we observe a distant object on a windy day, the air's turbulence causes the light from that object to scatter, making it appear blurry or distorted. The study of turbulent scattering involves analyzing how various factors influence the scattering process. These factors include the size and shape of the particles within the turbulent medium, the wavelength of the light being scattered, and the velocity of the turbulent flow. Researchers often use mathematical models and simulations to predict how light behaves in turbulent environments. One practical application of understanding turbulent scattering is in improving communication systems. In optical communication, signals are transmitted through fiber optics, which can be affected by turbulence in the surrounding environment. By comprehending how turbulence impacts signal clarity, engineers can develop better technologies to mitigate these effects, ensuring more reliable data transmission. Additionally, turbulent scattering plays a crucial role in meteorology. Weather phenomena, such as clouds and storms, are influenced by turbulent air currents. Scientists study how light scatters in these turbulent conditions to improve weather predictions and understand atmospheric processes. For example, remote sensing technologies utilize the principles of turbulent scattering to gather data about cloud formations and precipitation patterns. Furthermore, in oceanography, turbulent scattering is vital for understanding underwater visibility. The scattering of sunlight in turbulent water affects how deep light penetrates the ocean, impacting marine life and ecosystems. Researchers investigate how different factors, such as water temperature and salinity, influence turbulent scattering to better comprehend marine environments. In conclusion, turbulent scattering is a fundamental concept in various scientific disciplines, encompassing the chaotic behavior of light as it interacts with turbulent media. Its implications reach far beyond theoretical studies, influencing practical applications in communication, meteorology, and oceanography. As technology advances, further exploration of turbulent scattering will undoubtedly lead to new discoveries and innovations that enhance our understanding of the natural world and improve our daily lives.

在物理学的领域,特别是在流体动力学和光学中,术语湍流散射指的是光或其他波与处于湍流状态的介质之间复杂的相互作用。这种现象发生在流体的流动变得混乱时,导致不可预测的运动模式。理解湍流散射对于气象学、海洋学甚至电信等各种应用至关重要。湍流可以定义为一种流动状态,其特征是压力和流速的混乱变化。当光通过湍流介质(如空气或水)传播时,它会遇到许多粒子和不规则性,这些粒子和不规则性使光向不同方向散射。这个散射过程会显著影响能见度和信号的传播。例如,当我们在风大的日子观察远处的物体时,空气的湍流使该物体的光线散射,使其看起来模糊或扭曲。对湍流散射的研究涉及分析各种因素如何影响散射过程。这些因素包括湍流介质中粒子的大小和形状、被散射光的波长以及湍流流动的速度。研究人员通常使用数学模型和模拟来预测光在湍流环境中的行为。理解湍流散射的一个实际应用是改善通信系统。在光学通信中,信号通过光纤传输,而周围环境中的湍流可能会影响信号的清晰度。通过理解湍流如何影响信号的清晰度,工程师可以开发出更好的技术来减轻这些影响,从而确保数据传输的可靠性。此外,湍流散射在气象学中也起着至关重要的作用。天气现象,如云和风暴,受到湍流气流的影响。科学家们研究光在这些湍流条件下的散射,以改善天气预报和理解大气过程。例如,遥感技术利用湍流散射的原理收集有关云形成和降水模式的数据。此外,在海洋学中,湍流散射对于理解水下能见度至关重要。阳光在湍流水中的散射影响光线深入海洋的深度,从而影响海洋生物和生态系统。研究人员调查水温和盐度等不同因素如何影响湍流散射,以更好地理解海洋环境。总之,湍流散射是各个科学学科中的一个基本概念,涵盖了光在与湍流介质相互作用时的混乱行为。它的影响远远超出了理论研究,影响着通信、气象学和海洋学等实际应用。随着技术的进步,对湍流散射的进一步探索无疑将带来新的发现和创新,增强我们对自然世界的理解,并改善我们的日常生活。

相关单词

turbulent

turbulent详解:怎么读、什么意思、用法

scattering

scattering详解:怎么读、什么意思、用法