sinusoids
简明释义
英[ˈsɪn.ə.sɔɪdz]美[ˈsaɪ.nə.sɔɪdz]
n. [组织]血窦;正弦曲线(sinusoid 复数)
英英释义
Sinusoids are mathematical curves that describe a smooth periodic oscillation, typically represented by the sine and cosine functions. | 正弦曲线是描述平滑周期性振荡的数学曲线,通常由正弦函数和余弦函数表示。 |
单词用法
正弦函数 | |
正弦波 | |
正弦运动 | |
正弦信号 | |
叠加正弦波 | |
分析正弦波 | |
生成正弦波 | |
使用正弦波建模 |
同义词
正弦波 | 正弦波常用于信号处理。 | ||
振荡 | 在各种物理系统中可以观察到振荡。 | ||
谐波函数 | 谐波函数描述周期性现象。 |
反义词
非正弦波 | The signal is non-sinusoidal, which makes it difficult to analyze. | 这个信号是非正弦波的,这使得分析变得困难。 | |
混沌的 | 混沌系统不表现出正弦波行为。 |
例句
1.The sinusoids are packed with RBC's in this case of hereditary spherocytosis. The osmotic fragility of spherocytes is increased, because the RBC's have decreased surface area per unit volume.
遗传性球形红细胞增多症中,窦状隙被RBC塞满,球形红细胞的渗透性脆性增加,因为RBC每单位体积的表面积减少。
2.Red blood cells and specialist immune cells are seen in the sinusoids, pink structures running through the tissue for circulation.
红血细胞和特殊免疫细胞(粉红色部分)在肝窦隙中周而复始地循环。
3.These two sinusoids are nearly out of phase.
这两个正弦波几乎是反相的。
4.Beneath this are sinusoids extending to the center of the node.
下面是窦状小管延伸到淋巴结的中心。
5.Conclusion The formation of microaggregates of platelets in liver sinusoids may be the cause for the decreasing platelet amount and AGG in patients with hepatolithiasis having a histoy of cholangitis.
结论肝胆管结石病人血小板量及聚集性下降,可能与肝脏微聚物形成有关;
6.This paper is concerned with spectral estimation of a finite number of twodimensional sinusoids embedded in white noise.
本文论述白色噪声淹没下有限个二维正弦信号的谱估计问题。
7.The sound waves produced by musical instruments often consist of multiple sinusoids 正弦波 at various frequencies.
乐器产生的声音波通常由多个不同频率的sinusoids正弦波组成。
8.To model the tides, scientists often use sinusoids 正弦波 due to their periodic nature.
为了模拟潮汐,科学家们常常使用sinusoids正弦波,因为它们具有周期性。
9.In signal processing, filtering techniques can isolate specific sinusoids 正弦波 from a complex signal.
在信号处理中,滤波技术可以从复杂信号中分离出特定的sinusoids正弦波。
10.In physics, the motion of a pendulum can be described using sinusoids 正弦波 to represent its oscillation.
在物理学中,摆的运动可以用sinusoids正弦波来描述,以表示其振荡。
11.In electrical engineering, signals can be represented as combinations of different sinusoids 正弦波 to analyze their behavior.
在电气工程中,信号可以表示为不同的sinusoids正弦波的组合,以分析它们的行为。
作文
In the field of mathematics and engineering, the term sinusoids refers to a specific type of smooth, periodic oscillation that can be described by sine or cosine functions. These functions are fundamental in various applications, including signal processing, acoustics, and electrical engineering. Understanding sinusoids is crucial for anyone who wishes to delve into the realms of wave mechanics or harmonic analysis. The simplest form of a sinusoid is represented as y = A sin(Bx + C) + D, where A represents the amplitude, B affects the frequency, C is the phase shift, and D is the vertical shift. The amplitude indicates how far the wave moves from its central position, while the frequency determines how often the wave oscillates within a given time period. The phase shift allows us to adjust the starting point of the wave, and the vertical shift moves the entire wave up or down on the graph. One of the most significant properties of sinusoids is their ability to represent simple harmonic motion. For example, when a mass is attached to a spring and set into motion, it will oscillate back and forth in a manner that can be modeled using sinusoids. This concept extends beyond mechanical systems; it also applies to electrical circuits, where alternating current (AC) can be described using sinusoids. In the realm of signal processing, sinusoids play a vital role in the analysis and synthesis of signals. Engineers often use Fourier analysis, which decomposes complex signals into a sum of simpler sinusoids. This technique allows for a better understanding of the frequency components of a signal, making it easier to filter out noise or enhance certain frequencies. Moreover, sinusoids are prevalent in natural phenomena. Sound waves, for instance, can be approximated by sinusoids, as they exhibit periodic behavior. The pitch of a sound corresponds to the frequency of the sinusoids produced, while the loudness relates to the amplitude. Thus, musicians and audio engineers utilize the properties of sinusoids to create and manipulate sounds effectively. In conclusion, sinusoids are more than just mathematical abstractions; they are integral to understanding many physical systems and phenomena. From the oscillation of springs to the behavior of electrical circuits and sound waves, sinusoids provide a framework for analyzing and interpreting a wide array of situations. Mastering the concept of sinusoids opens doors to advanced studies in physics, engineering, and even music theory, making it an essential topic in both academic and practical contexts.
在数学和工程领域,术语sinusoids指的是一种特定类型的平滑周期性振荡,可以用正弦或余弦函数来描述。这些函数在信号处理、声学和电气工程等多种应用中都是基础。理解sinusoids对任何希望深入波动力学或谐波分析领域的人来说都是至关重要的。最简单的sinusoid形式表示为y = A sin(Bx + C) + D,其中A表示幅度,B影响频率,C是相位偏移,D是垂直偏移。幅度表示波从其中心位置移动的距离,而频率决定了波在给定时间内振荡的频率。相位偏移使我们能够调整波的起始点,垂直偏移则将整个波向上或向下移动。sinusoids最显著的属性之一是它们能够表示简单谐波运动。例如,当一个质量附着在弹簧上并开始运动时,它将以一种可以用sinusoids建模的方式前后振荡。这个概念不仅限于机械系统;它还适用于电路,其中交流电(AC)可以用sinusoids来描述。在信号处理领域,sinusoids在信号的分析和合成中发挥着至关重要的作用。工程师们经常使用傅里叶分析,它将复杂信号分解为一系列简单的sinusoids之和。这种技术使得更好地理解信号的频率成分成为可能,从而更容易过滤噪声或增强某些频率。此外,sinusoids在自然现象中也很常见。例如,声音波可以用sinusoids来近似,因为它们表现出周期性行为。声音的音调对应于产生的sinusoids的频率,而响度与幅度有关。因此,音乐家和音频工程师利用sinusoids的特性来有效地创建和操控声音。总之,sinusoids不仅仅是数学抽象;它们对于理解许多物理系统和现象至关重要。从弹簧的振荡到电路的行为以及声波,sinusoids提供了分析和解释各种情况的框架。掌握sinusoids的概念为物理学、工程学甚至音乐理论的高级研究打开了大门,使其成为学术和实际背景中不可或缺的主题。