time delay characteristic

简明释义

延时特性

英英释义

The time delay characteristic refers to the specific behavior of a system or process that describes the time taken for an input signal to produce a corresponding output response.

时间延迟特性指的是一个系统或过程的特定行为,描述了输入信号产生相应输出响应所需的时间。

例句

1.In robotics, the time delay characteristic 时间延迟特性 of feedback loops must be minimized for precise control.

在机器人技术中,反馈回路的时间延迟特性 时间延迟特性必须最小化以实现精确控制。

2.During testing, we observed the time delay characteristic 时间延迟特性 of the software application.

在测试过程中,我们观察到了软件应用的时间延迟特性 时间延迟特性

3.The engineer analyzed the time delay characteristic 时间延迟特性 of the circuit to improve its performance.

工程师分析了电路的时间延迟特性 时间延迟特性以提高其性能。

4.Understanding the time delay characteristic 时间延迟特性 is crucial for optimizing communication systems.

理解时间延迟特性 时间延迟特性对于优化通信系统至关重要。

5.The time delay characteristic 时间延迟特性 of the sensor affects the accuracy of the readings.

传感器的时间延迟特性 时间延迟特性会影响读数的准确性。

作文

In the realm of engineering and technology, understanding system dynamics is crucial for effective design and operation. One important aspect that engineers often encounter is the time delay characteristic, which refers to the inherent lag in a system's response to an input signal. This phenomenon can significantly affect the performance and stability of various systems, including control systems, communication networks, and even biological processes.To illustrate the concept of time delay characteristic, consider a simple example of a thermostat controlling a heating system. When the temperature drops below a set threshold, the thermostat sends a signal to the heater to turn on. However, there is a noticeable delay before the heater begins to warm the room. This delay is due to several factors, including the time it takes for the heater to activate and the thermal inertia of the room. The time delay characteristic in this case can lead to overshooting or undershooting of the desired temperature, making it vital for engineers to account for this delay when designing such systems.The impact of time delay characteristic is not limited to heating systems; it is pervasive across various fields. For instance, in communication systems, data packets may experience delays due to network congestion or processing times. These delays can result in reduced quality of service, especially in real-time applications like video conferencing or online gaming. Understanding the time delay characteristic in these scenarios allows engineers to implement strategies to mitigate delays, such as optimizing routing protocols or increasing bandwidth.Moreover, in control systems, the time delay characteristic can pose significant challenges. A classic example is the use of feedback loops in automated processes. If there is a delay in the feedback signal, it can lead to oscillations and instability in the system. Engineers must carefully analyze the time delay characteristic to design appropriate controllers that can compensate for these delays, ensuring that the system remains stable and performs optimally.The time delay characteristic also plays a critical role in fields such as robotics and automation. For robots to perform tasks accurately, they must process sensory information and respond in real-time. Delays in processing can lead to errors in movement and task execution. Therefore, understanding the time delay characteristic allows robotic engineers to improve algorithms and hardware, reducing latency and enhancing overall performance.In conclusion, the time delay characteristic is a fundamental concept that permeates various domains of engineering and technology. Its implications are vast, affecting system performance, stability, and efficiency. By recognizing and addressing the time delay characteristic, engineers can design better systems that respond more effectively to inputs, ultimately leading to improved functionality and user satisfaction. As technology continues to evolve, the importance of understanding and managing time delay characteristic will only increase, making it a critical area of study for future engineers and technologists.

在工程和技术领域,理解系统动态对于有效的设计和操作至关重要。工程师经常遇到的一个重要方面是时间延迟特性,它指的是系统对输入信号响应时固有的滞后现象。这一现象会显著影响各种系统的性能和稳定性,包括控制系统、通信网络甚至生物过程。为了说明时间延迟特性的概念,考虑一个简单的例子,即恒温器控制加热系统。当温度降到设定阈值以下时,恒温器会向加热器发送信号以打开加热器。然而,在加热器开始加热房间之前,明显存在延迟。这种延迟是由于多个因素造成的,包括加热器激活所需的时间和房间的热惯性。在这种情况下,时间延迟特性可能导致期望温度的过冲或不足,因此工程师在设计此类系统时必须考虑这一延迟。时间延迟特性的影响不仅限于加热系统;它在各个领域普遍存在。例如,在通信系统中,数据包可能由于网络拥塞或处理时间而经历延迟。这些延迟可能导致服务质量下降,特别是在视频会议或在线游戏等实时应用中。理解这些场景中的时间延迟特性使工程师能够实施策略来减轻延迟,例如优化路由协议或增加带宽。此外,在控制系统中,时间延迟特性可能带来重大挑战。一个经典的例子是自动化过程中的反馈回路。如果反馈信号存在延迟,可能会导致系统的振荡和不稳定。工程师必须仔细分析时间延迟特性,设计合适的控制器以补偿这些延迟,确保系统保持稳定并达到最佳性能。时间延迟特性在机器人和自动化等领域也发挥着关键作用。为了让机器人准确执行任务,它们必须实时处理传感器信息并做出响应。处理中的延迟可能导致运动和任务执行中的错误。因此,理解时间延迟特性使机器人工程师能够改进算法和硬件,减少延迟,提高整体性能。总之,时间延迟特性是一个基本概念,渗透到工程和技术的各个领域。它的影响广泛,影响系统的性能、稳定性和效率。通过识别和解决时间延迟特性,工程师可以设计出更好的系统,更有效地响应输入,最终提高功能性和用户满意度。随着技术的不断发展,理解和管理时间延迟特性的重要性只会增加,使其成为未来工程师和技术人员研究的关键领域。