time constant

简明释义

时间常数

英英释义

A time constant is a measure of the time it takes for a system to respond to a change, typically defined as the time required for a quantity to reach approximately 63.2% of its final value after a step change.

时间常数是衡量一个系统对变化响应所需时间的指标,通常定义为在阶跃变化后,某一量达到其最终值的约63.2%所需的时间。

例句

1.In thermal systems, the time constant 时间常数 indicates how fast the temperature stabilizes.

在热系统中,时间常数 time constant 表示温度稳定的速度。

2.A shorter time constant 时间常数 means the system will react more quickly to input changes.

较短的时间常数 time constant 意味着系统将更快地对输入变化作出反应。

3.In an RC circuit, the time constant 时间常数 determines how quickly the capacitor charges or discharges.

在RC电路中,时间常数 time constant 决定了电容器充电或放电的速度。

4.The time constant 时间常数 of a first-order system is critical for understanding its response to changes.

一阶系统的时间常数 time constant 对理解其对变化的响应至关重要。

5.The time constant 时间常数 can be calculated by multiplying resistance and capacitance in an electrical circuit.

在电路中,时间常数 time constant 可以通过将电阻和电容相乘来计算。

作文

The concept of the time constant is crucial in various fields of science and engineering, particularly in the study of dynamic systems. It provides a measure of how quickly a system responds to changes in input or external conditions. In simple terms, the time constant defines the time it takes for a system to reach approximately 63.2% of its final value after a step change in input. This idea is prevalent in electrical circuits, mechanical systems, and even biological processes.In electrical engineering, for instance, the time constant is often associated with RC (resistor-capacitor) circuits. When a voltage is applied to such a circuit, the capacitor does not charge instantaneously. Instead, it follows an exponential charging curve characterized by the time constant, which is the product of resistance (R) and capacitance (C). The larger the time constant, the slower the capacitor charges and discharges. This principle is fundamental in designing filters and timing circuits, where precise control over the timing of signals is necessary.Similarly, in mechanical systems, the time constant can describe how quickly a system reaches its steady state after a disturbance. For example, consider a mass-spring-damper system. When a force is applied, the system will oscillate before settling into a new equilibrium position. The time constant helps engineers understand how long it will take for the system to stabilize, which is essential in applications such as vehicle suspension design and vibration analysis.Biological systems also exhibit time constants. For instance, when studying the pharmacokinetics of a drug, the time constant can indicate how quickly the drug concentration in the bloodstream decreases after administration. Understanding this aspect is vital for determining the appropriate dosage and frequency of medication, ensuring that patients receive optimal therapeutic effects without adverse reactions.Furthermore, the concept of the time constant extends beyond physical systems to include social dynamics and economic models. In social sciences, the time constant can represent how quickly public opinion shifts in response to new information or events. Economists may use it to analyze how quickly markets react to changes in policy or economic indicators. This broad applicability demonstrates the importance of the time constant in understanding complex systems across different domains.To summarize, the time constant is a fundamental concept that plays a significant role in the analysis and design of various systems. Whether in electrical circuits, mechanical systems, biological processes, or social dynamics, understanding the time constant allows scientists and engineers to predict system behavior, optimize performance, and make informed decisions. As we continue to explore and innovate in these fields, the time constant will remain a key parameter in our toolkit, guiding us towards more efficient and effective solutions. Its relevance spans multiple disciplines, highlighting the interconnectedness of scientific principles and their applications in the real world.

“时间常数”这一概念在科学和工程的多个领域中至关重要,尤其是在动态系统的研究中。它提供了一个衡量系统如何快速响应输入或外部条件变化的标准。简单来说,“时间常数”定义了在输入发生阶跃变化后,系统达到其最终值约63.2%所需的时间。这个概念在电路、机械系统甚至生物过程中的应用都相当普遍。例如,在电气工程中,“时间常数”常常与RC(电阻-电容)电路相关联。当电压施加到这样的电路时,电容器不会瞬间充电。相反,它遵循一个由“时间常数”特征化的指数充电曲线,该常数是电阻(R)和电容(C)的乘积。“时间常数”越大,电容器充电和放电的速度就越慢。这一原理在设计滤波器和定时电路时至关重要,因为这些应用需要对信号的时序进行精确控制。同样,在机械系统中,“时间常数”可以描述系统在扰动后达到稳态的速度。例如,考虑质量-弹簧-阻尼器系统。当施加一个力时,系统会振荡,然后才能稳定到新的平衡位置。“时间常数”帮助工程师理解系统稳定所需的时间,这在汽车悬架设计和振动分析等应用中非常重要。生物系统也表现出“时间常数”的特性。例如,在研究药物的药代动力学时,“时间常数”可以指示药物在体内浓度下降的速度。理解这一点对于确定合适的剂量和用药频率至关重要,从而确保患者在获得最佳治疗效果的同时避免不良反应。此外,“时间常数”的概念不仅限于物理系统,还包括社会动态和经济模型。在社会科学中,“时间常数”可以表示公众舆论在新信息或事件影响下转变的速度。经济学家可能会利用它来分析市场对政策或经济指标变化的反应速度。这种广泛的适用性展示了“时间常数”在理解不同领域复杂系统中的重要性。总之,“时间常数”是一个基本概念,在各种系统的分析和设计中发挥着重要作用。无论是在电路、机械系统、生物过程还是社会动态中,理解“时间常数”能够让科学家和工程师预测系统行为,优化性能,并做出明智的决策。随着我们在这些领域的不断探索和创新,“时间常数”将继续作为我们工具箱中的关键参数,引导我们朝着更高效和有效的解决方案前进。其相关性跨越多个学科,突显了科学原理及其在现实世界中应用的相互联系。