through bracket
简明释义
贯穿机件的托座
英英释义
A method of including or considering something within a specific range or context, often used in mathematical or analytical discussions. | 在特定范围或上下文中包含或考虑某事的一种方法,常用于数学或分析讨论中。 |
例句
1.The formula was presented through bracket 通过括号 inclusion for clarity.
公式通过括号的包含方式呈现,以便于理解。
2.We can calculate the total cost through bracket 通过括号 grouping of expenses.
我们可以通过对费用进行括号分组来计算总成本。
3.You should always simplify expressions through bracket 通过括号 elimination first.
你应该首先通过消除括号来简化表达式。
4.The data was analyzed through bracket 通过括号 notation to identify trends.
数据是通过括号符号来分析,以识别趋势。
5.The results were summarized through bracket 通过括号 analysis of the key metrics.
结果通过对关键指标的括号分析进行总结。
作文
In the world of mathematics and science, the concept of grouping numbers or variables is fundamental. One common method of achieving this is by using brackets. When we talk about performing operations through bracket, we refer to the way we simplify expressions by prioritizing calculations within these brackets. This principle is not only applicable in math but also extends to various fields such as programming and logical reasoning.For instance, consider a mathematical expression like 2 + 3 × (4 - 1). According to the order of operations, we must first solve the expression inside the brackets before proceeding with the multiplication and addition. Therefore, we calculate 4 - 1, which equals 3. Next, we multiply 3 by 3, resulting in 9. Finally, we add 2, yielding a total of 11. This example illustrates how we can effectively simplify complex calculations through bracket usage.Moreover, in programming, the use of brackets plays a crucial role in defining the scope of operations. For instance, in languages like Python or Java, functions and control structures often require brackets to encapsulate their parameters or conditions. When we write a conditional statement, we might say if (x > 10) { doSomething(); }. Here, the brackets help clarify which actions should be executed if the condition is true. Thus, understanding how to navigate through bracket structures is essential for any aspiring coder.In logical reasoning, brackets help in clarifying the relationships between different propositions. For example, in propositional logic, we might encounter statements like (A ∧ B) → C. The brackets here indicate that A and B are to be considered together before applying the implication to C. This clarity ensures that we interpret the logical relationships correctly, avoiding potential ambiguities that could arise without the use of brackets.Furthermore, in writing, brackets can serve to provide additional information or clarification without disrupting the flow of the main text. For instance, one might write: "The committee (which was formed last year) has decided to extend the deadline." Here, the information within the brackets gives context but does not interfere with the primary message. This technique allows writers to convey more detailed information through bracket usage while maintaining readability.In conclusion, the concept of using brackets is an essential tool in various domains, including mathematics, programming, logical reasoning, and writing. By allowing us to group elements and clarify relationships, brackets enhance our ability to communicate complex ideas effectively. Whether we are solving equations, writing code, or crafting essays, mastering the use of brackets will undoubtedly improve our proficiency and understanding. Therefore, embracing the practice of operating through bracket will lead to greater clarity and efficiency in our work.
在数学和科学的世界里,分组数字或变量的概念是基础。实现这一目标的一种常见方法是使用括号。当我们谈论通过括号进行运算时,我们指的是通过优先考虑括号内的计算来简化表达式的方法。这一原则不仅适用于数学,还扩展到编程和逻辑推理等多个领域。例如,考虑一个数学表达式,如 2 + 3 × (4 - 1)。根据运算顺序,我们必须首先解决括号内的表达式,然后再进行乘法和加法。因此,我们计算 4 - 1,结果为 3。接下来,我们将 3 乘以 3,得出 9。最后,我们加上 2,总共得到 11。这个例子说明了如何通过使用括号有效地简化复杂的计算。此外,在编程中,括号的使用在定义操作范围方面起着至关重要的作用。例如,在 Python 或 Java 等语言中,函数和控制结构通常需要括号来封装它们的参数或条件。当我们编写条件语句时,可能会说 if (x > 10) { doSomething(); }。这里,括号帮助澄清如果条件为真则应执行哪些操作。因此,理解如何在括号结构中导航对于任何有抱负的程序员来说都是必不可少的。在逻辑推理中,括号有助于澄清不同命题之间的关系。例如,在命题逻辑中,我们可能会遇到像 (A ∧ B) → C 的陈述。这里的括号表明 A 和 B 应该一起考虑,然后再将其应用于 C。这种清晰性确保我们正确解释逻辑关系,避免没有使用括号可能产生的歧义。此外,在写作中,括号可以用于提供额外的信息或澄清,而不会干扰主要文本的流畅性。例如,人们可能会写道:“委员会(去年成立)决定延长截止日期。”这里,括号内的信息提供了背景,但并不妨碍主要信息的传达。这种技巧使作者能够通过使用括号传达更详细的信息,同时保持可读性。总之,使用括号的概念是数学、编程、逻辑推理和写作等各种领域的重要工具。通过允许我们对元素进行分组和澄清关系,括号增强了我们有效传达复杂思想的能力。无论我们是在解方程、编写代码还是撰写文章,掌握括号的使用无疑会提高我们的熟练程度和理解力。因此,接受通过括号进行操作的做法将使我们的工作更加清晰和高效。
相关单词