thermodynamical
简明释义
英[ˌθɜːməʊdaɪˈnæmɪkəl]美[ˌθɜrmoʊdaɪˈnæmɪkəl]
热力学的
英英释义
Relating to the branch of physics that deals with the relationships between heat and other forms of energy. | 与研究热与其他形式能量之间关系的物理学分支相关。 |
单词用法
热力学分析 | |
热力学效率 | |
热力学循环 | |
热力学波动 | |
热力学第一定律 | |
热力学第二定律 | |
热力学第三定律 | |
经典热力学理论 |
同义词
热力学的 | The thermodynamic principles govern the behavior of energy systems. | 热力学原理支配着能源系统的行为。 | |
热的 | Understanding thermal properties is essential for materials science. | 理解热属性对材料科学至关重要。 |
反义词
机械的 | Mechanical energy is the sum of potential and kinetic energy. | 机械能是势能和动能的总和。 | |
静态的 | In a static system, there are no changes in energy or motion. | 在静态系统中,能量或运动没有变化。 |
例句
1.The rotational partition function and thermodynamical properties of hydrogen;
讨论了室温条件下氢的转动配分函数应采用的形式。
2.The thermodynamical performance evaluation shows that within the experimental range, applying the inlet axial vane swirlers to enhancing the heat transfer in a tube is profitable.
试验表明:在试验范围内使用进口轴向叶片旋流器来强化管内换热总是有利的。
3.An in-situ test of large industrial water primps characteristics, which is a combination of thermodynamical method and motor shaft power measurement, is described in this paper.
将热力学方法与电工仪表测算电动机轴功率方法结合起来,可以较准确地测出一台工业用大型水泵的性能。
4.The characteristic and the thermodynamical tristate conversion of ABS are described.
阐述了ABS的特性和热力学三态转化的状况;
5.The author considers that outburst of coal-seam gases is not only a dynamic phenomenon, but also a very complicated thermodynamical conversion process of energy.
作者认为,煤层气体的突出不仅是一种动力现象,它还是一种复杂的热力学过程。
6.The results of analysis show that wty the silicon separatas out as a preliminary phase, and why the Al-Si alloys have their own pseudoeutectic structures are all for thermodynamical reasons.
分析结果表明,共晶结晶时硅之所以成为先析出相,铝硅合金之所以存在伪共晶,都有其热力学原因。
7.Laser motion equation have been obtained with thermodynamical method in the paper, and term of "random force - is not appeared in the equation."
本文用热力学方法处理了激光运动方程,得到的运动方程中不出现“随机力”项。
8.A thermodynamical 热力学的 analysis can help predict the efficiency of a heat engine.
进行热力学的分析可以帮助预测热机的效率。
9.In engineering, understanding thermodynamical 热力学的 properties is crucial for designing efficient systems.
在工程中,理解热力学的性质对于设计高效系统至关重要。
10.The study of energy conversion relies heavily on thermodynamical 热力学的 principles.
能量转换的研究在很大程度上依赖于热力学的原理。
11.The second law of thermodynamical 热力学的 states that entropy in an isolated system always increases.
第二热力学定律指出,孤立系统中的熵总是增加的。
12.The thermodynamical 热力学的 behavior of gases can be described using the ideal gas law.
气体的热力学的行为可以用理想气体定律来描述。
作文
Thermodynamics is a branch of physics that deals with the relationships between heat and other forms of energy. The principles of thermodynamics are essential for understanding various physical processes, from engines to refrigerators. One of the key concepts in this field is the idea of energy conservation, which states that energy cannot be created or destroyed, only transformed from one form to another. This principle is crucial in both practical applications and theoretical studies. In the context of thermodynamical (热力学的) systems, we can observe how energy flows and changes state. For instance, when we boil water, the heat energy is transferred from the stove to the water, causing it to change from a liquid to a gaseous state. This transformation illustrates the first law of thermodynamics, which emphasizes the conservation of energy. Moreover, the second law of thermodynamics introduces the concept of entropy, which measures the degree of disorder in a system. Entropy tends to increase over time, indicating that natural processes have a tendency to move towards a state of greater disorder. This principle has profound implications for understanding why certain processes are irreversible, such as the melting of ice or the mixing of gases. These phenomena remind us that while energy transformation is possible, it often comes with an increase in entropy, leading to less usable energy in a thermodynamical (热力学的) system.In engineering, the principles of thermodynamical (热力学的) analysis are applied to design more efficient machines and processes. For example, in designing a car engine, engineers must consider how to maximize the conversion of fuel into mechanical energy while minimizing waste heat. This is where the efficiency of a thermodynamical (热力学的) cycle, such as the Carnot cycle, becomes relevant. The Carnot cycle represents an idealized process that helps us understand the maximum possible efficiency of heat engines.Furthermore, the applications of thermodynamical (热力学的) principles extend beyond engineering. In the field of chemistry, understanding thermodynamical (热力学的) properties allows scientists to predict how substances will react under different conditions. For instance, the Gibbs free energy is a vital concept that helps determine the spontaneity of chemical reactions. If the change in Gibbs free energy is negative, the reaction can occur spontaneously; if positive, it will not proceed without external intervention.In conclusion, the study of thermodynamical (热力学的) principles is fundamental to many scientific disciplines and practical applications. From understanding how engines work to predicting chemical reactions, the implications of thermodynamics are vast and significant. As we continue to advance in technology and science, the principles of thermodynamical (热力学的) analysis will remain crucial in guiding our innovations and understanding of the natural world.
热力学是物理学的一个分支,研究热与其他形式能量之间的关系。热力学的原理对于理解各种物理过程至关重要,从发动机到冰箱。在这一领域,一个关键概念是能量守恒的思想,即能量不能被创造或毁灭,只能从一种形式转化为另一种形式。这个原理在实际应用和理论研究中都是至关重要的。在thermodynamical(热力学的)系统的背景下,我们可以观察到能量如何流动和变化状态。例如,当我们煮水时,热能从炉子传递到水中,使其从液态变为气态。这一转化说明了热力学第一定律,强调了能量的守恒。此外,热力学第二定律引入了熵的概念,熵衡量系统中无序程度。熵随着时间的推移而增加,这表明自然过程有向更大无序状态发展的趋势。这个原理对理解某些过程为何不可逆具有深远的影响,比如冰的融化或气体的混合。这些现象提醒我们,虽然能量转化是可能的,但通常伴随着熵的增加,导致在thermodynamical(热力学的)系统中可用能量的减少。在工程领域,thermodynamical(热力学的)分析原理被应用于设计更高效的机器和过程。例如,在设计汽车发动机时,工程师必须考虑如何最大化燃料转化为机械能,同时最小化废热的产生。这就是热力学循环的效率,如卡诺循环,变得相关的原因。卡诺循环代表了一种理想化的过程,帮助我们理解热机的最大可能效率。此外,thermodynamical(热力学的)原理的应用超出了工程学。在化学领域,理解thermodynamical(热力学的)性质使科学家能够预测物质在不同条件下的反应。例如,自由能是一个重要概念,帮助确定化学反应的自发性。如果吉布斯自由能的变化为负,则反应可以自发进行;如果为正,则在没有外部干预的情况下不会进行。总之,研究thermodynamical(热力学的)原理对许多科学学科和实际应用至关重要。从理解发动机如何工作到预测化学反应,热力学的影响广泛而重要。随着我们在技术和科学上不断进步,thermodynamical(热力学的)分析原理将继续在指导我们的创新和对自然世界的理解中发挥关键作用。