thermal endurance

简明释义

耐热度

英英释义

Thermal endurance refers to the ability of a material or system to withstand high temperatures over an extended period without significant degradation or failure.

热耐久性是指材料或系统在长时间内承受高温而不发生显著降解或失效的能力。

例句

1.The new material has excellent thermal endurance 热耐久性, making it ideal for use in high-temperature environments.

这种新材料具有优异的热耐久性热耐久性,非常适合用于高温环境。

2.Engine components must be tested for thermal endurance 热耐久性 to ensure they can withstand extreme heat.

发动机组件必须经过热耐久性热耐久性测试,以确保它们能够承受极端高温。

3.In aerospace engineering, thermal endurance 热耐久性 is crucial for materials used in spacecraft.

在航空航天工程中,热耐久性热耐久性对用于航天器的材料至关重要。

4.The laboratory conducted experiments to measure the thermal endurance 热耐久性 of various plastics.

实验室进行了实验,以测量各种塑料的热耐久性热耐久性

5.Manufacturers often advertise the thermal endurance 热耐久性 of their products to attract customers.

制造商通常宣传其产品的热耐久性热耐久性以吸引顾客。

作文

Thermal endurance is a critical concept in various fields, including materials science, engineering, and environmental studies. It refers to the ability of a material or system to withstand high temperatures without losing its structural integrity or performance. Understanding thermal endurance (耐热性) is essential for designing components that will operate in extreme conditions, such as aerospace applications, automotive engines, and industrial furnaces. In the realm of materials science, researchers are constantly looking for substances that exhibit exceptional thermal endurance (耐热性). For instance, ceramics and certain alloys are often used because they can maintain their strength and stability even when exposed to elevated temperatures. This property is crucial for ensuring the longevity and reliability of components that face thermal stress. Without adequate thermal endurance (耐热性), materials may deform, crack, or fail entirely, leading to catastrophic results. In engineering, the concept of thermal endurance (耐热性) plays a significant role in the design of systems that require efficient heat management. For example, in the automotive industry, engineers must consider the thermal endurance (耐热性) of engine components to prevent overheating. This involves selecting materials that can dissipate heat effectively while maintaining performance under high temperatures. Failure to account for thermal endurance (耐热性) can result in engine failure, increased emissions, and reduced fuel efficiency. Environmental studies also highlight the importance of thermal endurance (耐热性) when evaluating the impact of climate change on ecosystems. Many species are sensitive to temperature fluctuations, and their survival depends on their ability to adapt to changing thermal conditions. For instance, coral reefs exhibit varying levels of thermal endurance (耐热性) depending on the species. Some corals can withstand higher temperatures, while others are more susceptible to bleaching and mortality when exposed to heat stress. Understanding these differences is vital for conservation efforts and predicting the future of marine biodiversity. Moreover, advancements in technology have led to the development of new materials with enhanced thermal endurance (耐热性). Innovations such as nanomaterials and composites have shown promise in improving the heat resistance of traditional materials. These breakthroughs not only enhance performance but also open up new possibilities for applications in extreme environments, such as space exploration and high-performance sports equipment. In conclusion, thermal endurance (耐热性) is an essential property that impacts various disciplines, from materials science to environmental studies. As our world continues to evolve and face new challenges, the ability to understand and improve thermal endurance (耐热性) will remain a priority. Whether it is ensuring the safety and longevity of engineering components or protecting vulnerable ecosystems, the significance of thermal endurance (耐热性) cannot be overstated. By investing in research and development, we can create more resilient materials and systems that can thrive in the face of rising temperatures and other environmental stresses.

耐热性是材料科学、工程和环境研究等多个领域中的一个关键概念。它指的是材料或系统在高温下不失去其结构完整性或性能的能力。理解耐热性thermal endurance)对于设计在极端条件下运行的组件至关重要,例如航空航天应用、汽车发动机和工业炉。在材料科学领域,研究人员不断寻找表现出卓越耐热性thermal endurance)的物质。例如,陶瓷和某些合金通常被使用,因为它们即使在高温下也能保持强度和稳定性。这一特性对确保承受热应力的组件的耐久性和可靠性至关重要。如果没有足够的耐热性thermal endurance),材料可能会变形、开裂或完全失效,从而导致灾难性的后果。在工程领域,耐热性thermal endurance)这一概念在需要有效热管理的系统设计中发挥了重要作用。例如,在汽车工业中,工程师必须考虑发动机组件的耐热性thermal endurance)以防止过热。这涉及选择能够有效散热的材料,同时在高温下保持性能。如果未能考虑耐热性thermal endurance),可能导致发动机故障、排放增加和燃油效率降低。环境研究同样强调了在评估气候变化对生态系统影响时耐热性thermal endurance)的重要性。许多物种对温度波动敏感,它们的生存依赖于适应不断变化的热条件。例如,珊瑚礁根据物种表现出不同程度的耐热性thermal endurance)。一些珊瑚能够承受更高的温度,而其他珊瑚在面临热应激时更容易褪色和死亡。理解这些差异对于保护工作和预测海洋生物多样性的未来至关重要。此外,技术的进步导致开发出具有增强耐热性thermal endurance)的新材料。纳米材料和复合材料等创新在提高传统材料的耐热性方面显示出前景。这些突破不仅提高了性能,还为极端环境中的应用开辟了新的可能性,例如太空探索和高性能运动器材。总之,耐热性thermal endurance)是影响多个学科的重要属性,从材料科学到环境研究。随着我们的世界不断发展并面临新挑战,理解和改善耐热性thermal endurance)的能力将始终是优先事项。无论是确保工程组件的安全和耐久性,还是保护脆弱的生态系统,耐热性thermal endurance)的重要性都不容小觑。通过投资于研究和开发,我们可以创造出在面对日益升高的温度和其他环境压力时能够蓬勃发展的更具韧性的材料和系统。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

endurance

endurance详解:怎么读、什么意思、用法