thermal agitation

简明释义

热骚动

英英释义

Thermal agitation refers to the random motion of particles in a substance due to thermal energy, which increases with temperature.

热激发是指物质中粒子由于热能而产生的随机运动,随着温度的升高而增加。

例句

1.As the solid heats up, the thermal agitation 热运动 of its atoms increases.

随着固体加热,其原子的热运动 thermal agitation 增加。

2.In a liquid, thermal agitation 热运动 helps to dissolve solutes more quickly.

在液体中,热运动 thermal agitation 有助于更快地溶解溶质。

3.The increase in temperature leads to more intense thermal agitation 热运动 of the molecules in the gas.

温度的升高导致气体中分子的热运动 thermal agitation 更加剧烈。

4.The concept of thermal agitation 热运动 is crucial in understanding the behavior of gases.

理解气体行为时,热运动 thermal agitation 的概念至关重要。

5.At absolute zero, thermal agitation 热运动 theoretically ceases.

在绝对零度下,热运动 thermal agitation 理论上停止。

作文

In the world of physics, understanding the fundamental concepts that govern the behavior of matter is crucial. One such concept is thermal agitation, which refers to the random motion of particles in a substance due to thermal energy. This phenomenon is particularly significant in the study of gases, liquids, and solids, as it helps to explain various properties and behaviors of materials at different temperatures.At the molecular level, all matter is composed of atoms and molecules that are in constant motion. As the temperature of a substance increases, the average kinetic energy of its particles also increases, leading to more vigorous and rapid thermal agitation. This increased movement can result in changes to the state of matter; for example, solid ice melts into liquid water when heated, primarily due to the heightened thermal agitation that overcomes the attractive forces holding the molecules in a rigid structure.Moreover, thermal agitation plays a crucial role in understanding the behavior of gases. According to the kinetic theory of gases, gas molecules are in constant, random motion, colliding with one another and the walls of their container. The pressure exerted by a gas is a direct result of these collisions, which are influenced by the degree of thermal agitation. As the temperature rises, the molecules move faster, leading to more frequent and forceful collisions, thereby increasing the pressure.In liquids, thermal agitation allows molecules to overcome intermolecular forces, enabling them to flow and take the shape of their container. The viscosity of a liquid, or its resistance to flow, is affected by the level of thermal agitation. For instance, heating honey decreases its viscosity because the increased thermal agitation allows the molecules to move more freely.Solids also exhibit thermal agitation, albeit to a lesser extent than liquids and gases. In solids, particles are tightly packed and vibrate around fixed positions. However, as temperature increases, these vibrations become more pronounced, leading to phenomena such as thermal expansion. When heated, most solids expand due to the increased thermal agitation of their constituent particles, which pushes them further apart.Understanding thermal agitation is essential not only in theoretical physics but also in practical applications. For instance, engineers must consider thermal agitation when designing materials that will be subjected to varying temperatures. Materials that can withstand high levels of thermal agitation without deforming or breaking are crucial in industries such as aerospace and automotive manufacturing.In conclusion, thermal agitation is a fundamental concept that describes the random motion of particles in a substance due to thermal energy. Its implications are vast, influencing the properties of solids, liquids, and gases. By grasping the significance of thermal agitation, we can better understand the physical world around us and apply this knowledge to various scientific and engineering challenges.

在物理学的世界中,理解支配物质行为的基本概念至关重要。其中一个概念是热运动,它指的是由于热能而导致的物质中粒子的随机运动。这种现象在气体、液体和固体的研究中尤为重要,因为它有助于解释不同温度下材料的各种特性和行为。在分子层面上,所有物质都是由原子和分子组成,它们处于不断的运动中。随着物质温度的升高,其粒子的平均动能也随之增加,从而导致更剧烈和快速的热运动。这种运动的增强可能导致物态的变化;例如,当冰被加热时,它会融化成液态水,这主要是由于增强的热运动克服了保持分子在刚性结构中的吸引力。此外,热运动在理解气体行为方面起着至关重要的作用。根据气体的动理论,气体分子处于不断的随机运动中,相互碰撞以及与其容器的壁面碰撞。气体施加的压力直接源于这些碰撞,而这些碰撞又受到热运动程度的影响。随着温度的升高,分子的运动速度加快,导致更频繁和强烈的碰撞,从而增加了压力。在液体中,热运动使分子能够克服分子间的作用力,使其能够流动并占据容器的形状。液体的粘度,即其流动的阻力,受到热运动的影响。例如,加热蜂蜜会降低其粘度,因为增加的热运动使分子能够更自由地移动。固体也表现出热运动,尽管其程度低于液体和气体。在固体中,粒子紧密堆积,并围绕固定位置振动。然而,随着温度的升高,这些振动变得更加明显,导致热膨胀等现象。当加热时,大多数固体因其组成粒子的热运动增加而膨胀,从而将它们推得更远。理解热运动不仅在理论物理中至关重要,在实际应用中同样重要。例如,工程师在设计将承受不同温度的材料时,必须考虑热运动。能够在不变形或断裂的情况下承受高水平热运动的材料在航空航天和汽车制造等行业中至关重要。总之,热运动是一个基本概念,它描述了由于热能而导致的物质中粒子的随机运动。它的影响是广泛的,影响着固体、液体和气体的特性。通过掌握热运动的重要性,我们可以更好地理解我们周围的物理世界,并将这一知识应用于各种科学和工程挑战。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

agitation

agitation详解:怎么读、什么意思、用法