stream-Froude number
简明释义
流的深度和速度傅汝德数
英英释义
例句
1.Engineers often use the stream-Froude number 流动弗劳德数 to determine whether the flow is subcritical or supercritical.
工程师通常使用流动弗劳德数 stream-Froude number 来确定流动是亚临界还是超临界。
2.A stream-Froude number 流动弗劳德数 greater than one indicates a rapid flow condition.
大于一的流动弗劳德数 stream-Froude number 表示快速流动条件。
3.The stream-Froude number 流动弗劳德数 is used to assess the stability of sediment transport in channels.
使用流动弗劳德数 stream-Froude number 来评估渠道内沉积物运输的稳定性。
4.The calculation of the stream-Froude number 流动弗劳德数 is essential for understanding the flow regime in open channel hydraulics.
计算流动弗劳德数 stream-Froude number 对于理解开放渠道水力学中的流动状态至关重要。
5.In river engineering, monitoring the stream-Froude number 流动弗劳德数 helps predict potential flooding scenarios.
在河流工程中,监测流动弗劳德数 stream-Froude number 有助于预测潜在的洪水情景。
作文
The concept of the stream-Froude number is a critical parameter in fluid mechanics and hydrodynamics, used to characterize the flow of fluids. It is defined as the ratio of the inertial forces to the gravitational forces acting on a fluid element. This number plays a significant role in determining the behavior of water flow in rivers, streams, and other bodies of water. Understanding the stream-Froude number can help engineers and scientists predict flow patterns, assess the stability of structures near water bodies, and design effective flood control measures.In essence, the stream-Froude number is calculated using the formula: Fr = V / (gL)^(1/2), where V is the flow velocity, g is the acceleration due to gravity, and L is a characteristic length, typically the depth of the flow. When the stream-Froude number is less than one, the flow is considered subcritical, indicating that gravitational forces dominate and the flow is relatively calm. Conversely, when the stream-Froude number exceeds one, the flow is classified as supercritical, suggesting that inertial forces are more significant, leading to rapid and turbulent flow conditions.The implications of the stream-Froude number extend beyond theoretical studies; they have practical applications in various fields. For instance, in river engineering, knowing the stream-Froude number helps in designing bridges and dams by predicting how water will behave during different flow conditions. In environmental science, it assists in understanding sediment transport and erosion processes, which are critical for maintaining ecological balance in aquatic systems.Furthermore, the stream-Froude number also serves as a tool in hydraulic modeling. Engineers use this number to scale laboratory experiments to real-world scenarios, ensuring that models accurately represent the complex interactions between water and structures. By maintaining the same stream-Froude number in both the model and the prototype, researchers can confidently extrapolate their findings from small-scale tests to large-scale applications.In summary, the stream-Froude number is not merely a theoretical construct but a fundamental aspect of fluid dynamics with vast implications in engineering, environmental science, and hydraulic modeling. Its ability to classify flow regimes aids in the understanding and prediction of fluid behavior, which is essential for safe and effective design practices in various industries. As our understanding of fluid dynamics continues to evolve, the stream-Froude number will remain a vital element in the study and application of fluid mechanics, influencing how we interact with and manage our water resources effectively.
“流体-弗劳德数”是流体力学和水动力学中的一个关键参数,用于描述流体的流动。它被定义为作用于流体元素的惯性力与重力之间的比率。这个数字在确定河流、溪流及其他水体的水流行为中起着重要作用。理解“流体-弗劳德数”可以帮助工程师和科学家预测流动模式,评估水体附近结构的稳定性,并设计有效的防洪措施。从本质上讲,“流体-弗劳德数”的计算公式为:Fr = V / (gL)^(1/2),其中V是流速,g是重力加速度,L是特征长度,通常是流动的深度。当“流体-弗劳德数”小于一时,流动被认为是亚临界的,表明重力作用占主导地位,流动相对平稳。相反,当“流体-弗劳德数”超过一时,流动被分类为超临界,这意味着惯性力更为重要,导致快速和湍急的流动条件。“流体-弗劳德数”的影响不仅限于理论研究;它在多个领域有实际应用。例如,在河流工程中,了解“流体-弗劳德数”有助于设计桥梁和大坝,通过预测水在不同流动条件下的行为。在环境科学中,它有助于理解沉积物运输和侵蚀过程,这对维持水生系统的生态平衡至关重要。此外,“流体-弗劳德数”也是水力模型中的一个工具。工程师使用这个数字将实验室实验的结果缩放到现实世界场景中,确保模型准确反映水与结构之间的复杂相互作用。通过在模型和原型中保持相同的“流体-弗劳德数”,研究人员可以自信地将他们的发现从小规模测试推断到大规模应用。总之,“流体-弗劳德数”不仅仅是一个理论构想,而是流体动力学的基本方面,在工程、环境科学和水力模型中具有广泛的影响。它对流动状态的分类有助于理解和预测流体行为,这对于各行业安全有效的设计实践至关重要。随着我们对流体动力学理解的不断发展,“流体-弗劳德数”将继续成为流体力学研究和应用中的重要元素,影响我们如何有效地与水资源互动和管理。