system dynamics

简明释义

控制系统的动态特性

英英释义

System dynamics is a method for understanding the behavior of complex systems over time, using feedback loops and time delays to model interactions within the system.

系统动力学是一种理解复杂系统随时间变化行为的方法,利用反馈回路和时间延迟来模拟系统内部的相互作用。

例句

1.The study of system dynamics 系统动态学 helps us understand complex interactions in ecosystems.

系统动态学的研究有助于我们理解生态系统中的复杂互动。

2.By applying system dynamics 系统动态学, we can simulate the effects of different policies on urban traffic.

通过应用系统动态学,我们可以模拟不同政策对城市交通的影响。

3.The system dynamics 系统动态学 model revealed how feedback loops affect economic stability.

系统动态学模型揭示了反馈循环如何影响经济稳定性。

4.The workshop focused on system dynamics 系统动态学 techniques for improving project management.

研讨会专注于提高项目管理的系统动态学技术。

5.Using system dynamics 系统动态学 can enhance our understanding of supply chain complexities.

使用系统动态学可以增强我们对供应链复杂性的理解。

作文

In today's complex world, understanding the interactions between various components of a system is crucial. This is where system dynamics (系统动力学) comes into play. System dynamics is a methodology used to model and analyze the behavior of complex systems over time. It focuses on the feedback loops and time delays that can significantly influence the performance and stability of a system. By employing this approach, we can gain insights into how different variables interact and affect one another, leading to more informed decision-making.The origins of system dynamics can be traced back to the 1950s when Jay Forrester developed it at the Massachusetts Institute of Technology (MIT). Initially, it was applied to understand industrial processes, but its applications have since expanded to various fields, including environmental studies, economics, and public health. The core principle of system dynamics lies in its ability to represent systems as interconnected structures rather than isolated parts. This holistic view enables analysts to see the bigger picture and understand how changes in one part of a system can lead to unintended consequences elsewhere.One of the key tools in system dynamics is the use of stock and flow diagrams. Stocks represent the accumulations of resources or information in a system, while flows indicate the rates at which these stocks change over time. By visually mapping out these relationships, we can simulate different scenarios and observe how various factors influence the overall system behavior. This simulation capability is particularly valuable in policy-making, where stakeholders can explore the potential impacts of their decisions before implementing them.For instance, consider the issue of urban traffic congestion. Using system dynamics, city planners can create models that account for various factors such as population growth, road capacity, and public transportation availability. By simulating different strategies, such as expanding roadways or improving public transit, planners can predict how these changes might alleviate congestion and enhance overall mobility. This predictive power is one of the most significant advantages of system dynamics.Moreover, system dynamics can also be applied to environmental issues. Climate change, for example, is a complex problem involving numerous variables, including greenhouse gas emissions, deforestation, and energy consumption. By using system dynamics modeling techniques, researchers can analyze the long-term effects of different policies aimed at reducing emissions. This helps policymakers understand the potential trade-offs and synergies between various approaches, leading to more effective climate action strategies.In conclusion, the importance of system dynamics in understanding and managing complex systems cannot be overstated. Its ability to model interactions and feedback loops provides invaluable insights that can guide decision-making across various domains. As we face increasingly intricate challenges in our world, embracing system dynamics will be essential for developing sustainable solutions that consider the interconnectedness of all components within a system. By leveraging this powerful methodology, we can better navigate the complexities of modern life and work towards a more harmonious future.

在当今复杂的世界中,理解系统中各个组成部分之间的相互作用至关重要。这就是系统动力学system dynamics)的作用所在。系统动力学是一种用于建模和分析复杂系统随时间变化行为的方法论。它关注反馈环路和时间延迟,这些因素可以显著影响系统的性能和稳定性。通过采用这种方法,我们可以深入了解不同变量如何相互作用并相互影响,从而做出更明智的决策。系统动力学的起源可以追溯到20世纪50年代,当时杰伊·福雷斯特(Jay Forrester)在麻省理工学院(MIT)开发了这一方法。最初,它被应用于理解工业过程,但其应用范围随后扩展到环境研究、经济学和公共卫生等多个领域。系统动力学的核心原则在于将系统视为相互关联的结构,而不是孤立的部分。这种整体视角使分析师能够看到更大的图景,并理解系统某一部分的变化如何导致其他地方的意外后果。在系统动力学中,一个关键工具是使用库存和流动图。库存代表系统中资源或信息的累积,而流动表示这些库存随时间变化的速率。通过可视化这些关系,我们可以模拟不同的情景,观察各种因素如何影响整体系统行为。这种模拟能力在政策制定中尤为宝贵,利益相关者可以在实施决策之前探索其潜在影响。例如,考虑城市交通拥堵问题。使用系统动力学,城市规划者可以创建模型,考虑人口增长、道路容量和公共交通可用性等各种因素。通过模拟不同的策略,例如扩展道路或改善公共交通,规划者可以预测这些变化如何缓解拥堵并提高整体流动性。这种预测能力是系统动力学最显著的优势之一。此外,系统动力学还可以应用于环境问题。例如,气候变化是一个复杂的问题,涉及多个变量,包括温室气体排放、森林砍伐和能源消耗。通过使用系统动力学建模技术,研究人员可以分析不同旨在减少排放的政策的长期影响。这帮助政策制定者理解各种方法之间的潜在权衡和协同作用,从而制定更有效的气候行动策略。总之,系统动力学在理解和管理复杂系统中的重要性不容小觑。它建模相互作用和反馈环路的能力提供了宝贵的见解,可以指导各个领域的决策。随着我们面临越来越复杂的挑战,接受系统动力学将对开发考虑系统内所有组成部分相互联系的可持续解决方案至关重要。通过利用这一强大的方法论,我们可以更好地应对现代生活的复杂性,朝着更加和谐的未来努力。

相关单词

dynamics

dynamics详解:怎么读、什么意思、用法