radioactivity
简明释义
英[ˌreɪdiəʊækˈtɪvəti]美[ˌreɪdioʊækˈtɪvəti]
n. 放射性,放射现象;放射物(或其辐射)
英英释义
单词用法
高放射性 | |
低放射性 | |
放射性衰变 | |
放射性材料 | |
测量放射性 | |
检测放射性 | |
暴露于放射性 | |
监测放射性水平 |
同义词
反义词
稳定性 | 材料的稳定性确保其使用安全。 | ||
非放射性 | Non-radioactive substances are often preferred in medical applications. | 非放射性物质在医学应用中通常更受欢迎。 |
例句
1.This work prepared the way for the discovery of the neutron by Sir James Chadwick and, above all, for the discovery in 1934 by Irène and Frédéric Joliot-Curie of artificial radioactivity.
这项工作为詹姆斯·查德威克爵士发现中子铺平了道路,尤其是为伊莲娜和弗雷德里克·约里奥特·居里在1934年发现人工放射性奠定了基础。
2.Earth's internal heat, fueled by radioactivity, provides the energy for plate tectonics and continental drift, mountain building, and earthquakes.
地球内部因放射而产生的热量为板块运动、大陆漂移、造山运动和地震提供了能量。
3.As a precaution scientists are monitoring radioactivity in the air.
作为一项预防措施,科学家正在监测空气中放射性系数。
4.Born Maria Sklodowska in Poland in 1867, she is famous for her work on radioactivity, and was twice a winner of the Nobel Prize.
她于1867年出生在波兰,原名玛丽亚·斯克洛多夫斯卡,以放射性研究而闻名,曾两次获得诺贝尔奖。
5.Are there acceptable levels for radioactivity in food?
有无可接受的食品放射活性方面的规定?
6.What is the danger level for humans and radioactivity?
对人类的危险程度和放射性是什么?
7.Scientists use radioactivity 放射性 to date ancient artifacts.
科学家利用放射性来给古代文物定年。
8.Measuring radioactivity 放射性 levels is essential in nuclear power plants.
在核电站,测量放射性水平是必不可少的。
9.The study of radioactivity 放射性 is crucial for understanding nuclear reactions.
对放射性的研究对于理解核反应至关重要。
10.The radioactivity 放射性 of certain materials can be harmful to human health.
某些材料的放射性可能对人类健康有害。
11.Geologists study the radioactivity 放射性 of rocks to understand Earth's history.
地质学家研究岩石的放射性以了解地球的历史。
作文
Radioactivity is a fascinating and complex phenomenon that has significant implications in various fields, including medicine, energy production, and environmental science. At its core, radioactivity refers to the process by which unstable atomic nuclei lose energy by emitting radiation. This radiation can take the form of alpha particles, beta particles, or gamma rays, all of which have different properties and uses. Understanding radioactivity is essential for harnessing its potential benefits while also managing its risks. The discovery of radioactivity in the late 19th century by scientists such as Henri Becquerel and Marie Curie marked a pivotal moment in science. Their work revealed that certain elements, like uranium and radium, could spontaneously emit radiation without any external influence. This groundbreaking discovery opened the door to the exploration of atomic structure and led to the development of nuclear physics. In medicine, radioactivity plays a crucial role in diagnostic imaging and treatment. For instance, radioactive isotopes are used in PET scans, which allow doctors to visualize metabolic processes in the body. Moreover, radioactivity is employed in cancer treatments, where targeted radiation therapy can destroy malignant cells while minimizing damage to surrounding healthy tissue. The ability to use radioactivity in these ways has revolutionized modern medicine, providing tools for early detection and effective treatment of diseases. On the other hand, the energy sector has also benefited significantly from radioactivity. Nuclear power plants harness the energy released from nuclear fission—a process that involves splitting heavy atomic nuclei, such as uranium-235. This process produces a tremendous amount of energy, which can be converted into electricity. As the world seeks sustainable and low-carbon energy sources, nuclear energy stands out as a viable alternative. However, the management of nuclear waste and the potential for catastrophic accidents pose significant challenges that must be addressed to ensure the safe use of radioactivity in energy production. Environmental science also grapples with the effects of radioactivity. Natural background radiation exists everywhere, but human activities, such as mining and nuclear testing, can increase exposure levels. Understanding the impact of radioactivity on ecosystems and human health is vital for developing appropriate safety standards and regulations. For example, after the Chernobyl disaster in 1986, extensive research was conducted to assess the long-term effects of radioactivity on the environment and public health. Despite its many applications, radioactivity poses risks that cannot be ignored. Prolonged exposure to high levels of radiation can lead to serious health issues, including cancer. Therefore, it is essential to educate the public about radioactivity and its associated risks. Safety protocols and regulations must be strictly enforced in industries that utilize radioactive materials to protect workers and the community. In conclusion, radioactivity is an integral part of modern science and technology, offering both remarkable benefits and significant challenges. From medical advancements to energy production, the applications of radioactivity are vast and varied. However, as we continue to explore and utilize this powerful phenomenon, we must remain vigilant in managing its risks to ensure a safe and sustainable future. By fostering a deeper understanding of radioactivity, we can harness its potential while safeguarding our health and the environment.
放射性是一种迷人而复杂的现象,在医学、能源生产和环境科学等多个领域具有重要意义。从根本上说,放射性是指不稳定的原子核通过发射辐射失去能量的过程。这种辐射可以以α粒子、β粒子或γ射线的形式存在,这些粒子具有不同的特性和用途。理解放射性对于利用其潜在好处并管理其风险至关重要。19世纪末,亨利·贝克勒尔和玛丽·居里等科学家发现放射性,标志着科学上的一个重要时刻。他们的研究揭示了某些元素,如铀和镭,可以自发地发射辐射,而无需任何外部影响。这一突破性发现开启了对原子结构探索的大门,并导致了核物理学的发展。在医学中,放射性在诊断成像和治疗中发挥着关键作用。例如,放射性同位素用于PET扫描,使医生能够可视化体内的新陈代谢过程。此外,放射性还用于癌症治疗,靶向放射治疗可以摧毁恶性细胞,同时最小化对周围健康组织的损害。以这种方式使用放射性的能力彻底改变了现代医学,为早期检测和有效治疗疾病提供了工具。另一方面,能源部门也从放射性中受益匪浅。核电站利用核裂变释放的能量——这一过程涉及分裂重原子核,如铀-235。这一过程产生了大量的能量,可以转化为电力。随着世界寻求可持续和低碳的能源来源,核能脱颖而出,成为一种可行的替代方案。然而,核废料的管理和潜在的灾难性事故构成了必须解决的重要挑战,以确保在能源生产中安全使用放射性。环境科学也在应对放射性的影响。自然背景辐射无处不在,但人类活动,如采矿和核试验,可能会增加暴露水平。理解放射性对生态系统和人类健康的影响对于制定适当的安全标准和法规至关重要。例如,在1986年切尔诺贝利灾难后,进行了广泛的研究,以评估放射性对环境和公共健康的长期影响。尽管有许多应用,放射性也带来了不能忽视的风险。长期暴露于高水平辐射可能导致严重的健康问题,包括癌症。因此,教育公众关于放射性及其相关风险至关重要。在利用放射性材料的行业中,必须严格执行安全协议和法规,以保护工人和社区。总之,放射性是现代科学和技术不可或缺的一部分,既提供了显著的好处,也带来了重大挑战。从医学进步到能源生产,放射性的应用广泛而多样。然而,随着我们继续探索和利用这一强大现象,我们必须保持警惕,管理其风险,以确保安全和可持续的未来。通过加深对放射性的理解,我们可以利用其潜力,同时保护我们的健康和环境。